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Introduction

This volume of  Philosophy of Physics confronts quantum theory. 
The original intent was to cover both quantum theory and statis-
tical explanation, but that was not feasible, given the constraints 
of space. Quantum theory presents a fiendish challenge for a 
book like this: There are too many phenomena, too much tech-
nical elaboration, and too many fundamental conceptual issues 
to be adequately exposited in such a limited span. Unlike space- 
time theory, where there is substantial agreement about how to 
understand the best physics we have (General Relativity), quan-
tum theory has always been a battleground of contention. Noth-
ing one can say would command the assent of most physicists or 
philosophers.

Structuring the manuscript demanded painful choices about 
what to present, the appropriate level of technical complication, 
what historical background to include, which controversies to 
mention, which alternative elaborations of theories to consider. 
Every decision was difficult and can be legitimately challenged. 
Important phenomena and theoretical approaches have been left 
unmentioned. Ideas for reconciling quantum theory and Gen-
eral Relativity— quantum theories of gravity— are not discussed. 
All but the last chapter deal solely with nonrelativistic quantum 
theory.

What principle guided these choices? The central problem fac-
ing attempts to understand a quantum theory is how it manages 
to model empirical phenomena in a principled way. This is often 
referred to as “the measurement problem,” because the sorts of 
laboratory operations used to provide data are called “measure-
ments.” But the problem has a much wider scope. Any macro-
scopic phenomenon can in principle test a fundamental physical 
theory, because the theory should be able to provide a physical 
account of it. Erwin Schrödinger famously asked how quantum 
theory could model how a cat in a particular experimental setting 
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ends up either alive or dead. It is irrelevant for his point whether 
the experiment counts as a “measurement.”

John Stewart Bell made a proposal about how this can be done, 
which he called the theory of local beables. “Beables” refers to the 
ontology of a theory: what it postulates to exist. “Local” indicates 
a beable that exists in a small region of space or space- time. Fix-
ing the distribution of local beables at a microscopic scale fixes 
the location, shape, and motion of their macroscopic aggregates 
and thereby can solve the measurement problem and Schröding-
er’s cat problem. What one needs from such a theory is an inven-
tory of local beables and an account of their dynamics: how they 
get distributed in space- time.

This basic idea can be implemented in different ways, which 
can be illustrated in a nonrelativistic setting where the technical 
details are easier to grasp. These are admittedly empirically in-
adequate theories, but they provide models of general strategies 
for solving the measurement problem. They also illustrate many 
iconic quantum- mechanical effects. The additional challenges 
facing relativistic extensions can be considered later. So our in-
vestigation proceeds by discussing three ways to implement this 
strategy nonrelativistically, together with a short discussion of the 
additional challenges facing extensions to a relativistic space- time.

This approach faces perils. If the correct solution to the mea-
surement problem does not involve local beables, or if those 
beables have no nonrelativistic analogs, then starting with non-
relativistic quantum mechanics is counterproductive. But one has 
to start somewhere, and in an introduction, it is best to start with 
what is easiest to grasp. If nothing else, nonrelativistic quantum 
mechanics can act as a foil for alternative theories, so one can 
see how the assumptions made here fail. Starting from what we 
understand and seeing clearly its inadequacies can provide a path 
to conceptual progress.

By far the most controversial aspect of this book is not what 
it contains but what it omits. There is detailed discussion of the 
Ghirardi- Rimini- Weber spontaneous collapse theory, of the pilot 
wave theory of the Louis DeBroglie and David Bohm, and of Hugh 
Everett’s Many Worlds theory. But there is no discussion— indeed 
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aside from here no mention— of the most famous “interpreta-
tion” of quantum theory of all: the Copenhagen Interpretation 
ascribed to Niels Bohr and his colleagues. Why is that?

A physical theory should clearly and forthrightly address two 
fundamental questions: what there is, and what it does. The an-
swer to the first question is provided by the ontology of the the-
ory, and the answer to the second by its dynamics. The ontology 
should have a sharp mathematical description, and the dynamics 
should be implemented by precise equations describing how the 
ontology will, or might, evolve. All three of the theories we will 
examine meet these demands.

The Copenhagen Interpretation, in contrast, does not. There is 
little agreement about just what this approach to quantum theory 
postulates to actually exist or how the dynamics can be unam-
biguously formulated. Nowadays, the term is often used as short-
hand for a general instrumentalism that treats the mathematical 
apparatus of the theory as merely a predictive device, uncommit-
ted to any ontology or dynamics at all. That predictive device is 
described in Chapter 2 under the moniker “the quantum recipe.” 
Sometimes, accepting the Copenhagen Interpretation is under-
stood as the decision simply to use the quantum recipe without 
further question: Shut up and calculate. Such an attitude rejects 
the aspiration to provide a physical theory, as defined above, at 
all. Hence it is not even in the running for a description of the 
physical world and what it does. More specific criticisms could 
be raised against this legacy of Bohr, but our time is better spent 
presenting what is clear than decrying what is obscure.1

Besides rejecting the usual terminology of “quantum theory” 
versus “interpretation of quantum theory” in favor of “predictive 
recipe” versus “physical theory,” and besides ignoring the histori-
cal question of what (if anything) should count as the Copenhagen 
Interpretation, this book differs from most standard discussions 
in a third way. It has become almost de rigueur in the quantum 
foundations literature to systematically misuse the terms “realist,” 

1 More details about the obscurity can be found in Norsen (2017), Chapter 6, 
and throughout Beller (1999). See also Becker (2018).
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“realistic,” “antirealist,” and “antirealistic.” These terms have a pre-
cise meaning in the philosophy of science, a meaning that seems to 
be completely unfamiliar to most physicists. And it is not just that 
these physicists misuse these terms, it is rather that they simply toss 
them around with no attached meaning at all. This has had terrible 
consequences for discussions in foundations of quantum theory.

In the proper meaning of the term, physical theories are neither 
realist nor antirealist. That is, as we used to say, a category mis-
take. It is a person’s attitude toward a physical theory that is either 
realist or antirealist. For example, was Copernicus’s theory of the 
structure of the solar system realist or antirealist? That question 
has no content. The theory was what it was: It postulated that the 
various planets and the earth engaged in particular sorts of mo-
tions. When Osiander wrote the preface to De Revolutionibus, 
he strongly advocated taking an antirealist attitude toward the 
theory: Don’t regard the theory as literally true, but just instru-
mentally as a convenient way to make certain predictions. He did 
this to protect Copernicus from the wrath of the Catholic church. 
Copernicus himself, and Galileo, adopted the opposite attitude: 
They wanted to argue that the theory is literally true, by reference 
to its explanatory power and simplicity. And they inherited cer-
tain physical problems (for example, problems in terrestrial me-
chanics) because of their attitude. But the theory toward which 
Osiander was antirealist and Galileo realist is one and the same 
theory. The theory itself is neither.

The scientific realist maintains that in at least some cases, we 
have good evidential reasons to accept theories or theoretical 
claims as true, or approximately true, or on- the- road- to- truth. 
The scientific antirealist denies this. These attitudes come in 
degrees: You can be a mild, medium, or strong scientific realist 
and similarly a mild, medium, or strong scientific antirealist. Ul-
timately, this is a question addressed by epistemology and con-
firmation theory. But this book is not about either epistemology 
or confirmation theory, so the issue of whether one should be a 
scientific realist or antirealist, and to what degree, is never even 
broached. Like “Copenhagen Interpretation,” the very terms “re-
alist” and “antirealist” do not appear outside this Introduction.



xiii

Introduction

The real damage that has been done by misapplying the term 
“realist” to theories rather than to people’s attitude toward theories 
is raising false hopes. For example, we will see that Bell’s theorem, 
together with reported data, rules out the possibility of any em-
pirically adequate physical theory that is local in a precise sense 
of the term “local.” The Pusey, Barrett, and Rudolph (PBR) theo-
rem, together with data that matches the predictions of quantum 
theory, rules out the possibility of any empirically adequate “psi- 
epistemic” physical theory. But often, when reporting these cru-
cial results, the term “realist” or “realistic” is snuck in. Bell, we 
are told, ruled out all local realistic theories, for example. And 
that locution strongly suggests that one can avoid nonlocality 
and evade Bell’s result by saying that realism is what ought to be 
abandoned. But this suggestion is nonsensical. Bell proves that 
no local theory, full stop, can predict violations of his inequality. 
Whether some person’s attitude toward the theory is one of scien-
tific realism or not is neither here nor there. If I had my druthers, 
“realist” and “anti- realist” would be banned from these founda-
tional discussions. And in my own book, I have my druthers, so I 
will not mention these terms again.

I owe an immense debt of gratitude to many people who have de-
voted their energy to improving this book. I received tremendously 
helpful comments from Chris Meacham, Chisti Stoica, Dan Pinkel, 
Bert Sweet, two anonymous referees, and students in my graduate 
seminar at New York University who were used to test- drive an 
earlier version. Zee Perry kindly turned some of my primitive im-
ages into polished figures: It will be obvious which is which. Cyd 
Westmoreland did a splendid job copyediting the manuscript.

I would never have been able to approach this project if not for 
years of discussion with David Albert, Detlef Dürr, Barry Loewer, 
the late Robert Weingard, Nino Zanghí, and above all Shelly 
Goldstein, to whom this feeble attempt is dedicated.

Neither this book, nor anything else of value in my life, would 
exist if not for Vishnya Maudlin. What she has given is beyond 
measure and description and can never be adequately acknowl-
edged with mere words.
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CHAPTER 1

Eight Experiments

Physics has TradiTionally  been characterized as the science of 
matter in motion. Rough as this characterization is, it illuminates 
the standing of physics with respect to all other empirical sci-
ences. Whatever else the objects of the various empirical sciences 
are, they are all instances of matter in motion. Every biological 
system, every economic system, every psychological system, 
every astronomical system is also matter in motion and so falls 
under the purview of physics. But not every physical system is 
biological or economic or psychological or astronomical. This is 
not to argue that these other empirical sciences reduce to phys-
ics, or that the other sciences do not provide an understanding of 
systems that is distinct from a purely physical account of them. 
Still, physics aspires to a sort of universality that is unique among 
empirical sciences and holds, in that sense, a foundational posi-
tion among them.

The phrase “matter in motion” presents two targets for fur-
ther analysis: “matter” and “motion.” Present physics elucidates 
the “motion” of an object as its trajectory through space- time. 
A precise understanding of just what this is requires a precise 
account of the structure of space- time. The physical account of 
space- time structure has changed through the ages, and at pres-
ent the best theory is the General Theory of Relativity. The nature 
of space- time itself and the geometrical structure of space- time 
is the topic of the companion volume to this one: Philosophy of 
Physics: Space and Time. The present volume addresses the ques-
tion: What is matter? The best theory of matter presently avail-
able is quantum theory. Our main task is to understand just what 
quantum theory claims about the nature of the material constitu-
ents of the world.
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As straightforward as this sounds, we must first confront a 
great paradox about modern physics. The two pillars on which 
modern physics rests are the General Theory of Relativity and 
quantum theory, but the status of these two theoretical systems is 
completely different. General Relativity is, in its own terms, com-
pletely clear and precise. It presents a novel account of space- time 
structure that takes some application and effort to completely 
grasp, but what the theory says is unambiguous. The more one 
works with it, the clearer it becomes, and there are no great de-
bates among General Relativists about how to understand it. (The 
only bit of unclarity occurs exactly where one has to represent the 
distribution of matter in the theory, using the stress- energy ten-
sor. Einstein remarked that that part of his theory is “low grade 
wood,” while the part describing the space- time structure itself 
is “fine marble.”1) In contrast, no consensus at all exists among 
physicists about how to understand quantum theory. There just 
is no precise, exact physical theory called “quantum theory” to 
be presented in these pages. Instead, there is raging controversy.

How can that be? After all, dozens and dozens of textbooks of 
quantum theory have been published, and thousands of physics 
students learn quantum theory every year. Some predictions of 
quantum theory have been subjected to the most exacting and 
rigorous tests in human history and have passed them. The whole 
microelectronics industry depends on quantum- mechanical cal-
culations. How can the manifest and overwhelming empirical 
success of quantum theory be reconciled with complete uncer-
tainty about what the theory claims about the nature of matter?

What is presented in the average physics textbook, what stu-
dents learn and researchers use, turns out not to be a precise 
physical theory at all. It is rather a very effective and accurate 
recipe for making certain sorts of predictions. What physics stu-
dents learn is how to use the recipe. For all practical purposes, 
when designing microchips and predicting the outcomes of ex-
periments, this ability suffices. But if a physics student happens to 
be unsatisfied with just learning these mathematical techniques 

1 Einstein (1950), p. 84.
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for making predictions and asks instead what the theory claims 
about the physical world, she or he is likely to be met with a ca-
nonical response: Shut up and calculate!

What about the recipe? Is it, at least, perfectly precise? It is not. 
John Stewart Bell pressed just this complaint:

A preliminary account of these notions was entitled ‘Quan-
tum field theory without observers, or observables, or 
measurements, or systems, or apparatus, or wavefunction 
collapse, or anything like that’. That could suggest to some 
that the issue in question is a philosophical one. But I insist 
that my concern is strictly professional. I think that con-
ventional formulations of quantum theory, and of quantum 
field theory in particular, are unprofessionally vague and 
ambiguous. Professional theoretical physicists ought to be 
able to do better.2

Bell’s complaint is that the predictive recipe found in textbooks 
uses such terms as “observer” and “measurement” and “apparatus” 
that are not completely precise and clear. This complaint about 
quantum theory does not originate with Bell: Einstein famously 
asked whether a mouse could bring about drastic changes in the 
universe just by looking at it.3 Einstein’s point was that some for-
mulations of quantum theory seek to associate a particular sudden 
change in the physical state of the universe (“collapse of the wave-
function”) with acts of observation. If this is to count as a precise 
physical theory, then one needs a precise physical characterization 
of an observation. As Bell put it: “Was the wavefunction of the 
world waiting to jump for thousands of millions of years until a 
single- celled living creature appeared? Or did it have to wait a little 
longer, for a better qualified system . . . with a Ph.D.?”4

These imprecisions in the formulation of the quantum recipe 
do not have noticeable practical effects when it comes to mak-
ing predictions. Physicists know well enough when a certain 

2 Bell (2004), p. 173.
3 Reported by Hugh Everett in Everett (2012), p. 157.
4 Bell (2004), p. 216.
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laboratory operation is to count as an observation, and what it 
is an observation of. Quantum theory predicts the outcomes of 
these experiments with stunning accuracy. But if one’s main inter-
est is in the nature of the physical world rather than the pragmat-
ics of generating predictions, this ability is of no solace. For the 
recipe simply does not contain any univocal account of the world 
itself. To illustrate this, the standard recipe does use a mathemati-
cal operation that can be called “collapse of the wavefunction.” 
But if one asks whether that mathematical operation corresponds 
to a real physical change in the world itself, the recipe does not 
say. And practicing physicists do not agree on the answer. Some 
will refuse to hazard an opinion about it.

Bell’s complaint might seem incredible. If the problems with 
quantum theory are not “merely philosophical” but rather con-
sist of the theory being unprofessionally vague and ambiguous 
as physics, why don’t the physics textbooks mention this? Much 
of the problem has been papered over by a misleading choice of 
terminology. A standard retort one might hear is this: Quantum 
mechanics as a physical theory is perfectly precise (after all, it has 
been used to make tremendously precise predictions!), but the in-
terpretation of the theory is disputable. And, one might also hear, 
interpretation is a philosophical problem rather than a physical 
one. Physicists can renounce the desire to have any interpretation 
at all and just work with the theory. An interpretation, whatever it 
is, must be just an inessential luxury, like the heated seats in a car: 
It makes you feel more comfortable but plays no practical role in 
getting you from here to there.

This way of talking is misleading, because it does not corre-
spond to what should be meant by a physical theory, or at least a 
fundamental physical theory. A physical theory should contain a 
physical ontology: What the theory postulates to exist as physically 
real. And it should also contain dynamics: laws (either determin-
istic or probabilistic) describing how these physically real enti-
ties behave. In a precise physical theory, both the ontology and 
the dynamics are represented in sharp mathematical terms. But it 
is exactly in this sense that the quantum- mechanical prediction- 
making recipe is not a physical theory. It does not specify what 



Eight Experiments

5

physically exists and how it behaves, but rather gives a (slightly 
vague) procedure for making statistical predictions about the 
outcomes of experiments. And what are often called “alternative 
interpretations of quantum theory” are rather alternative precise 
physical theories with exactly defined physical ontologies and 
dynamics that (if true) would explain why the quantum recipe 
works as well as it does.

Not every physical theory makes any pretense to provide a 
precisely characterized fundamental ontology. A physical theory 
may be put forward with the explicit warning that it is merely an 
approximation, that what it presents without further analysis is, 
nonetheless, derivative, and emerges from some deeper theory 
that we do not yet have in hand. In such a case, there may be 
circumstances in which the lowest level ontology actually men-
tioned by the theory is not precisely characterized. In the rest of 
this book, I will treat the theories under discussion as presenting 
a fundamental ontology that is not taken to be further analyzable, 
unless I indicate otherwise.

A precisely defined physical theory, in this sense, would never 
use terms like “observation,” “measurement,” “system,” or “appa-
ratus” in its fundamental postulates. It would instead say precisely 
what exists and how it behaves. If this description is correct, then 
the theory would account for the outcomes of all experiments, 
since experiments contain existing things that behave somehow. 
Applying such a physical theory to a laboratory situation would 
never require one to divide the laboratory up into “system” and 
“apparatus” or to make a judgment about whether an interaction 
should count as a measurement. Rather, the theory would postu-
late a physical description of the laboratory and use the dynamics 
to predict what the apparatus will (or might) do. Those predic-
tions can then be compared to the data reported.

So far, then, we have distinguished three things: a physical 
theory, a recipe for making predictions, and the sort of data or 
phenomena that might be reported by an experimentalist. What 
is usually called “quantum theory” is a recipe or prescription, 
using some somewhat vague terms, for making predictions about 
data. If we are interested in the nature of the physical world, what 
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we want is instead a theory— a precise articulation of what there 
is and how the physical world behaves, not just in the laboratory 
but at all places and times. The theory should be able to explain 
the success of the recipe and thereby also explain the phenomena.

Our order of investigation will start with some phenomena or 
data. We will try to report these phenomena in a “theory neutral” 
way, although in the end this will not quite be possible. But, as Aris-
totle said, any proper scientific investigation should start with what 
is clearer and more familiar to us and ascend to what is clearer by 
nature (Physics 184a16). We start with what we can see and try to 
end with an exactly articulated theory of what it really is.

Our phenomena are encapsulated in eight experiments.

exPerimenT 1: The caThode ray Tube

The two ends of an electrical battery are called “electrodes.” The 
positive electrode is the anode, and the negative one is the cath-
ode. Run wires from these electrodes to two conductive plates, 
put an open aperture in the anode, place a phosphor- coated 
screen beyond the anode, and enclose the whole apparatus in an 
evacuated tube. Finally, add a controllable heating element to the 
cathode. This apparatus, minus the heating element, was invented 
by Ferdinand Braun in 1897 and later came to be called a cathode 
ray tube (CRT). The heating element was added in the 1920s by 
John B. Johnson and Harry Weinhart.

Our first experiment consists of adjusting the heating element 
so the cathode warms up. When the cathode is quite hot, a bright 
spot, roughly the shape of the aperture in the anode, appears on 
the phosphorescent screen (Figure 1a, 1b). As we turn the heat-
ing element down, the spot gets dimmer and dimmer. Eventually, 
the spot no longer shines steadily, but instead individual flashes 
of light appear in the same area (Figure 1c). As the heat is further 
lowered, these individual flashes become less and less frequent, 
eventually only appearing one at a time, with significant gaps be-
tween them. But if we keep track of these individual flashes, over 
time they trace out the same region as the original steady spot.
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These are the phenomena or data. They immediately suggest 
certain hypotheses about what is going on inside the tube, but for 
the moment, we want to distinguish any such hypotheses from 
the data themselves. The phenomena suggest, for example, that 
something is going from the cathode (where the heating is ap-
plied), through the aperture in the anode, and to the phosphores-
cent screen. We can test this hypothesis by moving screen toward 
the anode while the spot is steady. The spot remains steady, and 
it narrows and brightens as it approaches the anode. Just in front 
of the anode, the spot is the same shape as the aperture. One can 
place a screen between the cathode and anode, where it will light 
with a larger, brighter, more diffuse glow. So there does seem to 
be something emitted from the cathode and going to the screen. 
Originally, this something was called cathode rays.

When we turn down the heat, these cathode rays exhibit a sort 
of discrete or grainy character, producing one flash at a time. We 
could not have predicted this behavior: The spot might have just 

Figure 1

cathode anode phosphor
coated
screen 

High voltage
generator

heaterheater

(a)

(b) (c)
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dimmed uniformly without ever resolving into individual scintil-
lations. These individual discrete events suggest a further hypoth-
esis, namely, that the cathode rays are composed of a collection of 
individual particles. These hypothetical particles were eventually 
called electrons, and the whole cathode/anode apparatus is some-
times referred to as an electron gun.

The model suggested by the term “electron gun” is strength-
ened by the following fact. Increasing the voltage of the battery 
increases the “speed” of the cathode rays in the sense that if we 
measure how long it takes between connecting the battery and 
seeing the spot, it takes less time for higher voltages. This rela-
tion yields a narrative: Heating the cathode boils off electrons, 
which, being negatively charged, are repelled by the negatively 
charged cathode and attracted to the positively charged anode. 
The greater the voltage difference between the two, the faster the 
electrons will go, with some passing through the aperture in the 
anode and continuing on to the screen.

It is indeed difficult to resist this particle hypothesis, but for 
the moment, resist it we must. The postulation of individual par-
ticles that travel from the cathode to the screen is not itself part of 
the data, although it might be part of a theory meant to account 
for the data.

Skepticism about the physical existence of individual discrete 
particles in this experimental situation may seem excessively cau-
tious, but our next two experiments point in another direction.

exPerimenT 2: The single sliT

If individual particles are flying from the cathode to the screen, 
then an object placed between the cathode and the screen might 
be able to affect these particles. As our first test of this hypoth-
esis, we place a barrier with a single slit. The spot on the phos-
phorescent screen becomes long and thin, much as one might 
have anticipated (Figure 2a). Making the slit thinner in what we 
will call the z- direction initially makes the image thinner, again 
as one would expect. But beyond a certain point, a peculiar 
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thing happens: making the slit even thinner results in the spot 
becoming wider and more spread out in the z- direction (Fig-
ure 2b). (In addition, the image starts to show some variation 
of brightness, with dark patches emerging. We leave that aside 
for now).

Our initial hypothesis of particles would not have hinted at 
this new development, but it is reminiscent of the familiar be-
havior of waves called diffraction. When a series of plane water 
waves hit a wide gap in a barrier (wide relative to the wavelength, 
i.e., distance between the crests), the wave train that gets through 
continues largely in the same direction, with just a little dissipa-
tion around the edges. But when it hits a very narrow gap, it cre-
ates a circular wave pattern on the other side that spreads farther 
upward and downward (Figures 3a and 3b). Crests are indicated 
by solid lines and troughs by dotted lines.

Since diffraction occurs when the size of the hole is small 
compared to the wavelength of the wave, the diffraction can be 
reduced by shortening the wavelength. And we find that the dif-
fraction of our cathode rays is reduced as we increase the voltage 
between the cathode and the anode. So in this respect, our cath-
ode rays behave somewhat like water waves, with the wavelength 
going down as the voltage goes up.

But it is still also the case that as we turn the heating element 
down, the glow goes from a steady state to a series of individual 
flashes, so in this sense, the phenomena suggest individual par-
ticles. The fact that the cathode rays (or electrons) produce phe-
nomena associated with waves and also phenomena associated 

Figure 2
(a) (b)

z-direction z-direction
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with particles is called wave- particle duality. But that is just a de-
scription of the phenomena, not an explanation of them.

exPerimenT 3: The double sliT

We are now in a position to describe the experiment most often 
associated with quantum theory: the double- slit experiment. In 
his classic Lectures on Physics, Richard Feynman is referring to 
the two- slit experiment when he says:

We choose to examine a phenomenon which is impos-
sible, absolutely impossible, to explain in any classical way, 
and which has in it the heart of quantum mechanics. In 
reality, it contains the only mystery. We cannot explain the 
mystery in the sense of “explaining” how it works. We will 
tell you how it works. In telling you how it works we will 
have told you about the basic peculiarities of all quantum 
mechanics.5

5 Feynman, Leighton, and Sands (1975), Section 37- 1.

Figure 3
(a) (b)
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Feynman is not correct when he says that there is no way to 
explain this phenomenon in a “classical” way, at least in one sense 
of “classical.” But this much is certainly true: the phenomenon is 
quite unexpected, and one does not really understand any physi-
cal theory that purports to account for the behavior of matter 
unless one understands how the theory accounts for this phe-
nomenon. Belying Feynman’s pessimism, we will discuss several 
quite different exact physical theories, all of which can explain it.

Experiment 2 already demonstrates a behavior of cathode 
rays similar to that of water waves: diffraction. But an even more 
striking characteristic is associated with waves, namely, interfer-
ence. Waves interfere because when they meet each other, they 
interact by superposition. For example, if the crest of one wave 
arrives at the same place as the equally deep trough of another, 
they cancel each other out; and if a crest meets a crest, they add 
to make a crest twice as tall. In Figures 3a,b, the solid lines repre-
sent the crests of the water waves, and the dotted lines represent 
the troughs. Now suppose instead of one hole or slit in the bar-
rier we put two, and suppose that each slit is narrow enough to 
cause a lot of diffraction: in essence, each slit becomes the source 
of a set of circular wave patterns emanating from it (Figure 4). 
Where the crests of one wave meet the troughs of the other, they 
cancel out, and the water becomes still; where two crests meet or 
two troughs meet, the water is extremely agitated. Regions where 
crests coincide with crests and troughs with troughs are indicated 
by unbroken arrows, and regions where crests meet troughs by 
broken arrows. This superposition results in interference bands 
at the screen: regions of extremely high activity alternating with 
quiescent regions. Points on the screen where the difference in 
distances to the two slits is half a wavelength, or one and a half, or 
two and a half, and so forth (so the two arriving waves are out of 
phase) show little wave activity, and points where the difference is 
an integer number of wavelengths show lots of activity. Following 
the analogy with diffraction, then, we would expect alternating 
light and dark bands on the screen. This is indeed exactly what 
happens. Using a photographic emulsion and turning the heat-
ing element down yields a situation in which only individual dots 
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appear on the screen, slowly accumulating to form the interfer-
ence bands (Figure 5).

The two- slit interference experiment simultaneously displays 
properties we would naturally associate with particles (the in-
dividual discrete flashes or dots) and also properties we would 
naturally associate with waves (the interference bands). This is 
startling. But why would Feynman make the much stronger state-
ment that the phenomenon cannot possibly be explained in any 
classical way?

Feynman’s idea seems to be this: “to explain in a classical way” 
means to postulate the existence of individual particles that make 
their way, along one continuous path, from the cathode to the 
screen. Each such particle would therefore have to either pass 
through one slit or pass through the other (or loop around some-
how to pass through both). Feynman calls the claim that each 
particle passes either through one slit or through the other “Prop-
osition A.” He then argues that Proposition A has some empiri-
cally testable consequences that turn out to be false, showing that 
we cannot accept it.

Suppose that each cathode ray that reaches the screen passes 
either just through the upper slit or just through the lower (leav-
ing aside more rococo possibilities). Feynman reasons as fol-
lows. We can determine the final distribution of rays that pass 
through the upper slit by closing off the lower slit and seeing what 

Figure 4

Figure 5. Credit: Reprinted courtesy 
of the Central Research Laboratory, 
Hitachi, Ltd., Japan.
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happens. But we already know what happens: that is just Experi-
ment 2. Similarly, we can close off the upper slit, in which case 
we get the same spread- out pattern just shifted over a bit. But the 
gaudily streaked interference pattern of the two- slit experiment is 
not the sum of these two experiments. Indeed, there are particu-
lar locations on the screen where spots will form if only the upper 
slit is open and spots will form if only the lower slit is open, but 
no spots will form if both slits are open.

Does it really follow from this observation, as Feynman sug-
gests, that Proposition A cannot be true? In chapter 5, I will pres-
ent a precise physical theory according to which each particle 
goes through exactly one slit and the interference bands only form 
when both slits are open. So there are ways to account for the 
data while validating Proposition A. What Feynman really seems 
to have in mind is not merely Proposition A, but also the addi-
tional proposition (call it Proposition B) that if an electron goes 
through one slit, then its later behavior will be the same regard-
less of whether the other slit is open. It is only with this second 
principle in place that one could infer that, given Proposition A, 
the distribution of flashes with both slits open would be the sum 
of the distributions with only one slit open. But Proposition B is 
not a proposition of classical physics, classical probability theory 
or classical logic. And the simple fact that there are locations on 
the screen where flashes occur if only one slit (whichever one) is 
open but never occur with both open already proves that for each 
individual flash, the physical situation at the screen is sensitive to 
the condition of both slits. This cannot be denied. What we want is 
a clear physical account of how it happens.

Denying Propositions A or B suggests that, in some sense, 
each electron or cathode ray interacts with both slits. And if this 
is true, then it is not surprising that the behavior at the screen 
can be sensitive to the fact that both slits are open. But for the 
electron or cathode ray to interact with both slits, it must some-
how be spread out over a region large enough to encompass both 
slits, just as a water wave would have to be spread out that much. 
And in that case, the mystery is not so much how the behavior 
can depend on the state of both slits, but rather why the flashes 
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on the screen occur at discrete, definite localizations. If a cathode 
ray really spreads out as a water wave does, how do the individual 
flashes manage to form?

As we will see, different precise theories embrace different 
horns of this dilemma. In some, the electron unproblematically 
goes through exactly one slit on its way to the screen, and the 
trick is to see how the other slit being open affects its later be-
havior. In others, the electron in some sense goes through both 
slits, and the trick is to account for the discrete flashes. But the 
situation is even more complicated: A slight modification of this 
experiment holds more surprises.

exPerimenT 4: The double sliT wiTh moniToring

Since our main puzzle concerns which slit, if either, the electron 
goes through on its trip from the anode to the screen, one might 
well ask: Why not just check? “Checking” means adding some 
new element to the experimental set- up designed to yield which 
way information about the electron, that is, information about 
which slit the particle went through. We will now explore a some-
what unrealistic and idealized modification of the experiment, 
but the effect of the modification on the phenomena is firmly 
based on quantum- mechanical principles.

With the thought that the electron is negatively charged, and 
that negatively charged particles attract positively charged ones, 
we might hit on the following scheme. Make a small, thin cham-
ber in the screen between the two slits, and place a proton in a 
position exactly between the slits. Line the ends of the chamber 
with a substance that will emit a flash if a proton is absorbed 
( Figure 6).

If the electron goes through the upper slit, the proton will be 
attracted upward and the flash will occur at the top of the cham-
ber, and if the electron goes through the lower slit, the flash will 
occur at the bottom. We can check the reliability of this monitor-
ing mechanism by running it first with each slit closed. If it is 
100% reliable, there will be a flash in the corresponding part of 
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the chamber when and only when there is a flash on the screen. 
That is, with the lower slit closed, there is a flash in the upper part 
of the chamber exactly when there is a flash on the screen, and 
similarly mutatis mutandis with the upper slit closed. We could 
also imagine less than perfect reliability: The corresponding flash 
might only happen 75% of the time, for example. We will consider 
this possibility presently.

Supposing we have achieved 100% reliability with only one slit 
open, what will happen when both slits are unblocked? Naively, 
we might expect to see the interference bands, as in Experiment 
3, but now with additional information from the flash in the 
chamber about which slit the electron went through. Or, if the 
electron somehow goes through both slits and so would equally 
pull the proton up and down, maybe the proton will just remain 
symmetrically in the middle. Experiment 3 gives us no clue about 
the outcome.

Figure 6
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As it turns out, this is what happens: Our completely reliable 
monitoring mechanism will continue to signal one slit or the 
other when there is a flash on the screen. And over time, about 
half of the electrons will be “seen” to have gone through the upper 
slit and about half through the lower. But the interference bands 
will completely disappear. The distribution of flashes on the screen 
will now be a simple sum of the distributions that occur when 
only one of the two slits is open. To put it somewhat poetically, 
when the path of the electron through the apparatus is observed, 
the behavior of the electrons changes from being wavelike (show-
ing interference) to being particle- like (showing no interference). 
But notice that the “observer” in this poetic description is not 
even as sophisticated as a mouse. It is just a single proton whose 
own behavior has been coupled in the right way to that of the 
electron. There is something about that physical coupling that 
both destroys the interference and also seems to yield informa-
tion about what the electron did.

What if we weaken the coupling between the electron and the 
proton? Suppose, for example, instead of reacting perfectly reli-
ably when an electron goes by, the proton only moves from the 
central position 75% of the time (but always in the right direction, 
as checked with only one slit open)? What will we see then?

As the reliability of the monitor is reduced, the interference 
bands will slowly and continuously emerge. But as long as the 
behavior of the proton is correlated with the electron (with only 
one slit open) the interference bands will not be as strong as in 
Experiment 3. And the role played by the proton in destroying 
the interference is illustrated in a very striking way. If one divides 
the electron flashes on the screen into those that occur when the 
proton gives a result and those that occur when the proton stays 
in the central part of the chamber, the washed- out interference 
bands get split into two strikingly different sets. In the set where 
the proton indicates a slit, there is no interference at all, and in 
the set where it remains in the center, there is full interference. 
The total distribution is just the sum of these. As we progressively 
weaken the coupling with the proton, the interference bands pro-
gressively reemerge to full force.



Eight Experiments

17

One might well wonder how any clear and precise physical ac-
count of what is going on could yield this sort of behavior. What 
sort of pattern appears on the screen seems to depend on whether, 
in some sense, anyone or anything is “watching” the electron. But 
must the physical theory therefore define “watching” in order to 
be articulated? How can that be done? Has the observer somehow 
claimed a central place in physics? Many physicists over the years 
have drawn just this conclusion. Experiment 4 gives us some in-
dication of the phenomena that led them to it. But the very sim-
plicity of the “watcher” in this experiment is promising. There 
is little prospect of producing an exact physical characterization 
of something as large and complicated as a mouse. But a single 
proton, coupled by electrical attraction to an electron, is exactly 
the sort of thing we expect an exact physical theory to treat with 
complete precision. So Experiment 4 ought to give us some hope.

exPerimenT 5: sPin

Our previous experiments have illustrated some of the peculiari-
ties of quantum theory. It is easy to see in these phenomena wave- 
particle duality, since individual flashes are suggestive of particles, 
and the collective interference patterns are suggestive of waves. 
Our last experiment illustrates how the physical role of obser-
vation might appear as a central theme. Even the simple single- 
slit diffraction experiment provides an instance of the famous 
Heisenberg uncertainty relations. Werner Heisenberg noticed 
that as our predictive abilities become better in some ways, they 
simultaneously become worse in others. The sorts of predictions 
that trade off in this way are called “complementary.” One stan-
dard example of complementarity is position and momentum in 
a given direction. Narrowing the slit in Experiment 2 decreases 
uncertainty about where in the z- direction a particle that passes 
the slit will show up just beyond the slit, but it simultaneously 
increases uncertainty about its z- momentum (i.e., how fast and in 
what direction it is moving in the z- direction) at that point. This 
increased spread in possible z- momenta results in the widening 
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of the image in the z- direction far from the slit. But so far we have 
not had much indication of the “quantum” in quantum theory. It 
is popularly thought that in quantum theory everything is quan-
tized into discrete units. But in our examples so far, that is not 
so. Our cathode rays can appear as flashes at any location on the 
screen, for example.

The simplest physical property that exhibits quantization is 
called “spin,” and manifests itself as an intrinsic angular momen-
tum of a particle. In classical physics, a spinning charged particle 
has a magnetic polarization. If an object has a north and south 
magnetic pole, then it will be deflected when travelling through 
an inhomogeneous magnetic field. Figure 7 shows a diagram of a 
Stern- Gerlach apparatus that produces this effect.

The apparatus is just a magnet, but because of the asymmetric 
geometry, the north pole creates a locally stronger magnetic field 
than does the south pole. A bar magnet in the field oriented with 
its north pole up and its south pole down would be pushed down, 
since the north will be repelled by the upper field more strongly 
than the south is repelled by the lower. Similarly, a bar magnet 
oriented the opposite way will move up, since the attraction of 
its south pole upward will overbalance the attraction of the north 
pole downward. A horizontally oriented bar magnet will not be 
pushed or pulled either way.

Our electrons are negatively charged, but it does not imme-
diately follow that they have magnetic moments. Classically, a 
spinning electric charge does create a magnetic field. Hence an 
intrinsic magnetic moment of a particle is associated with its 
“spin,” irrespective of whether it originates in the actual spinning 
motion of anything. One way to check for such a magnetic mo-
ment is to pass a particle through a Stern- Gerlach apparatus to 
see whether it is deflected.

If one does this sort of experiment on our cathode rays, the 
outcome is somewhat unexpected.6 Every electron is deflected ei-
ther up or down, with none going straight through. Furthermore, 

6 The physics here is somewhat idealized, although again the basic principles 
are correct. In practice, this experiment was first done with silver atoms.
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the amount of deflection is exactly the same in both cases. Our 
electron beam divides into two equally strong parts, one deflected 
toward the north pole of the apparatus (up- spin) and the other to-
ward the south pole (down- spin). Or, more precisely, our steady 
lighted patch on the screen splits into two equally bright patches, 
one above and the other below the midline. And as we turn the 
beam intensity down, we again get individual flashes, about half 
in a small region in the upper part of the screen, half in an equally 
small region in the lower part. Particles in a beam that splits into 
exactly two parts are called “spin- 1/2” particles. If it were to split 
into three parts, one going straight through, the particles would 
be spin- 1 particles. A beam of spin- 3/2 particles splits into four 
parts, and so on.

In Figure 7, the image on the screen looks like an eye, because 
the electron beam out at the edges does not go through an inhomo-
geneous field and so travels straight through. Stern and Gerlach’s 
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actual data are shown in Figure 8 on a postcard that Gerlach sent 
to Niels Bohr. In our schematic diagrams, we will cut off the sides, 
so only the most separated parts of the beam are indicated.

The Stern- Gerlach apparatus is itself oriented in some spa-
tial direction. Figure 7 designates the vertical direction as the z- 
direction and the horizontal one as the x- direction. If we twist the 
apparatus from the z- orientation to the x- orientation, the beam 
comes to split in the x- direction, as in the postcard. The apparatus 
can be set to have any spatial direction.

Since about half of the particles are deflected up and half de-
flected down, one naturally wonders whether some feature of 
each individual particle determines which way it goes. It not ob-
vious how to resolve this question experimentally, but some addi-
tional experimental configurations are clearly relevant. Let a first 
Stern- Gerlach apparatus be oriented in the z- direction, splitting 
the beam into an upper and lower branch. Then place a second 
apparatus, also oriented in the z- direction, in each of these beams 
(Figure 9a). We might expect each beam to split again, but it does 
not: the whole upper beam is deflected up and the whole lower 

Figure 8. With permission of Niels Bohr Archive, Copenhagen.
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beam deflected down. So electron beams can be prepared so that 
each electron in them is disposed to be deflected in a particular 
way by a z- oriented apparatus. Those disposed to be deflected up-
ward are called “z- spin up” electrons, and those disposed to be 
deflected down called “z- spin down.”

We can also follow a z- oriented apparatus with x - oriented ones 
(Figure 9b). In this case, each beam splits 50- 50. So preparing 
a beam so it can be predicted which way each electron will be 
deflected in the z- direction results in complete uncertainty about 
how it will be deflected in the x- direction. And testing the output 
of the x- apparatus with yet another z- apparatus reveals that the 
original preparation has been lost: the beam once again splits 50- 
50 up and down.

All electrons in a z- spin up beam get deflected up in the z - 
direction and only half do in the x- direction. What if we slowly 
rotate the second apparatus from the z- orientation to the x- 
orientation? Unsurprisingly, the proportion deflected in the up 
direction (with respect to the apparatus) varies smoothly from 
1 to 0.5. More quantitatively, the proportion deflected up at the 
second apparatus is cos2(/2), where  is the angle between the 
orientations of the two apparatuses.

Our spin experiments illustrate the quantization of spin, since 
each electron responds to the experimental condition in one of 
two possible ways. They also illustrate the Heisenberg uncertainty 

Figure 9
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relations: The more certain it is how an electron will react to a 
z- oriented apparatus, the less certain it will be how the electron 
reacts to one that is x- oriented and vice versa. This is analogous to 
the situation with z- position and z- momentum in the single- slit 
experiment.

The quantization of spin offers particularly sharp and clear ex-
perimental possibilities that are the subject of our next laboratory 
configuration.

exPerimenT 6: The inTerferomeTer

Our next experiment refines some of the phenomena we have 
already discussed. We have seen how a Stern- Gerlach apparatus 
can split an incoming beam of spin- 1/2 particles into two beams. 
Those beams can be further manipulated and recombined in an 
experimental configuration that was originally developed for 
light by Ludwig Mach and Ludwig Zehnder, and hence is known 
as the Mach- Zehnder interferometer.

The first experiment is a slight variation on a spin experiment 
we have already discussed. Prepare an x- spin up beam of elec-
trons and pass it through a z-oriented Stern- Gerlach device. We 
have already remarked that if we pass either of the output beams 
through an  x- oriented apparatus, the beam will again split: appar-
ently the  z - oriented magnet “scrambles” the information about 
the prepared x- spin. In itself, this is not terribly surprising. The 
interaction of the beam with the new magnetic field could have 
all sorts of disruptive effects. But the Mach- Zehnder configura-
tion allows us to steer the output beams of the z- oriented device 
back together, having been widely separated from each other for 
some time (Figure 10). A natural train of thought runs as follows: 
The x- spin of each separate output beam of the z- oriented mag-
net has been scrambled, with each particle equally likely to be 
deflected up or down. When two such scrambled beams are com-
bined, the result should be just as scrambled. So the recombined 
beam should also be equally split if passed through an x- oriented 
magnet at point A in the figure.
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This, however, is not what happens. Every single electron is de-
flected up at point A even though half would have been deflected 
down if the beam had instead been checked by a pair of devices 
located at points B and C. And if x- spin down electrons are fed 
into the interferometer, we get a similar result: Half will be de-
flected down if the x- spin is checked at points B and C, but all are 
deflected down if the x- spin of the recombined beam is checked 
at A. Information about how the original beam was prepared is 
somehow transmitted through the splitting and recombination, 
even though that very information appears to have been lost half 
way through! And once again, these statistics hold even if we turn 
down the intensity of the incoming beam so only one electron 
goes through the interferometer at a time.

Figure 10
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The interferometer set- up allows us a new opportunity: to in-
tervene on one branch of the split beam before it is recombined. 
One intervention is particularly striking. We have already seen 
that the spin of an electron is like an intrinsic magnetic moment, 
akin to that of a classical spinning charge. In a classical theory, 
applying a magnetic field to such an object will cause it to precess 
(i.e., to slowly rotate in space). One sort of magnetic field, applied 
for the right amount of time, would cause the object to rotate 
though a full 360° and hence (apparently) return to the same state 
it started in. We can apply such a magnetic field to our electrons,7 
and check that the precession does return the beam to its initial 
state: an  x- spin up beam remains x- spin up when the magnetic 
field is applied, an x- spin down beam remains x- spin down, z- 
spin up remains z- spin up, etc. Further, an x- spin up beam gets 
converted to x- down if the magnetic field is applied for half the 
time, just as one would expect if it were rotated through 180°. A 
device that applies the magnetic field for the full time is an ex-
ample of what David Albert calls a “total of nothing box” because 
the observable statistics of any beam are unchanged by the appli-
cation of the magnetic field.8 As far as predictions are concerned, 
a beam that has had the magnetic field applied behaves just like 
one that has not. The foregoing remarks hold so long as the whole 
beam is subjected to the magnetic field.

But suppose we split the beam in the interferometer and apply 
the magnetic field to only one part of the split beam (at point 
B, for example) and then recombine the beams. This interven-
tion has a dramatic effect on the outcome. Without the magnetic 
field, as we have seen, if we feed an x- spin up beam in, we get an 
x- spin up beam out after the recombination. But with the mag-
netic field in place, when we feed an x- spin up beam in, we get an 
x- spin down beam out. Every single electron is deflected down 
by an x- oriented magnet at the end, while without the magnetic 
field, every single electron is deflected up. In other words, every 

7 I am fudging the actual physics a bit: The experiment described here was car-
ried out on neutrons rather than electrons. Neutrons also are spin- 1/2 particles.

8 Albert (1992), p. 11.



Eight Experiments

25

electron fed through our device is demonstrably sensitive to the 
physical conditions along both paths in the interferometer: A cer-
tain magnetic field applied either at point B or at point C (but not 
both) will alter the behavior of every electron that passes through.

This is not, strictly speaking, a new sort of observation. We 
have already seen in the two- slit interference that every electron 
is sensitive to the state of both slits. The Mach- Zehnder config-
uration brings out this fact in a particularly striking way, since 
the two paths through the interferometer can be made to diverge 
from each other by arbitrary distances. Nonetheless, an interven-
tion on either branch can have an effect on every single electron.

exPerimenT 7: The ePr exPerimenT

Unlike the interferometer, our final two experiments bring in 
fundamentally new features of quantum theory. Indeed, we are 
starting on the path to the most puzzling and astonishing physical 
phenomena predicted by the quantum formalism and verified in 
the laboratory. These phenomena essentially involve collections 
of particles rather than single particles or beams of single par-
ticles. So far, only Experiment 4, the Double Slit with Monitoring, 
has required more than one particle at a time. Experiment 4 de-
mands this because the monitoring proton and passing electron 
must interact for the monitoring to occur. We now embark on a 
deeper investigation into such interactions, and into the informa-
tion that the behavior of one particle can yield about another.

The first experiment is a modification, proposed by David 
Bohm, of an experimental situation described by Albert Einstein, 
Boris Podolsky, and Nathan Rosen in “Can Quantum- Mechanical 
Description of Reality Be Considered Complete?” (1935), now 
known as the EPR paper.9 In that paper, the discussion con-
cerned the positions and momenta of a pair of particles pre-
pared in a special state. Bohm changed the example to use spin in 

9 Einstein, Podolsky, and Rosen (1935).
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various directions rather than position and momentum, and we 
will follow his simpler example.

Unlike all the experiments described so far, the basic phe-
nomena in the EPR experiment seem unremarkable. A pair of 
electrons is prepared in a particular quantum- mechanical state 
(called the “singlet” state) and is allowed to separate to an ar-
bitrary distance from each other. Each electron is then passed 
through a Stern- Gerlach apparatus oriented in a specific spatial 
direction (Figure 11). For example, both of the devices might be 
oriented in the z- direction. In this case, the two electrons always 
behave in opposite ways: If one is deflected upward in the appa-
ratus, the other is deflected downward. Therefore, by observing 
how one electron behaves, one can predict with perfect accuracy 
how the other will (or has).

So what is so remarkable about this? It is true that the behavior 
of one electron provides information about how the other will 
behave, but everyday instances of these sorts of correlations are 
commonplace. John Bell used the amusing example of the physi-
cist Reinhold Bertlmann, who always wore socks of different 
colors.10 Given this somewhat idiosyncratic choice of how to get 
dressed, the color of one sock (pink, say) provides information 
about the color of the other (not- pink).

10 “Bertlmann’s Socks and the Nature of Reality,” reprinted as Chapter 16 in 
Bell (2004).

Figure 11
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But notably, this prosaic account of the phenomenon essen-
tially presupposes that the socks have their colors all along, from 
the time Bertlmann got dressed. If, somehow, neither sock had 
any definite color in the morning, if a sock only acquired a defi-
nite color some time later (when observed, for example), then the 
situation would be truly remarkable. It would be remarkable first 
because of the no- definite- color to definite- color transition. One 
would rightly wonder about the physics of that change. But even 
granting that, there is a residual surprise, for not only would the 
one sock have to somehow come to become actually pink at some 
point, but the other sock (which might be miles away) would also 
somehow have to become some color other than pink, so that the 
colors would always be different. This idea, that interacting with 
one sock can somehow not merely provide information about the 
other but actually affect the physical state of the other, is an ex-
ample of the possibility of quantum nonlocality.

Einstein, Podolsky, and Rosen never took the possibility of 
such a nonlocal physical interaction between the socks (or the 
electrons) seriously. In fact, they thought the idea so absurd that 
they never imagined anyone would entertain it. What the EPR ar-
ticle pointed out was that to avoid such a strange “spooky action- 
at- a- distance” (in Einstein’s famous phrase), one has to postulate 
that the two electrons described above have definite dispositions 
concerning how they would react to the magnets from the mo-
ment they are produced and separate from each other. One of the 
electrons has to be z- spin up and the other z- spin down from the 
outset. Otherwise, how could either be sensitive to the behavior of 
the other in the right way to preserve the perfect anticorrelation?

It is worthwhile to belabor this point a little. Imagine, as an 
analogy, that you and a friend are going to be subjected to the 
following ordeal. You are going to be taken into separate rooms 
and asked a yes- no question. If you give different answers to the 
question, you will both be let go, but if you give the same response 
you will both be punished. You have absolutely no idea what the 
question will be.

You would likely not be daunted by this ordeal. After all, there 
is a simple way to avoid the punishment. You just have to agree 
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to give different answers to the question. But to carry out this 
scheme, you must do more than just agree to give different an-
swers, you must agree, while you can still communicate, exactly 
which answer each one will give. If your friend merely suggests 
that you give different answers but then leaves before saying how 
he will answer, then you are no better off than before. Without 
knowing how he will answer, you have no means to arrange your 
answer to be different, no matter how much you want it to be. 
Unless you somehow later acquire information about how your 
friend has answered, your strategy will be useless.

Similarly, if neither electron has a definite disposition to be 
deflected either up or down by the Stern- Gerlach apparatus 
when they separate, then it is hard to see how they can be as-
sured of being deflected in opposite ways without some physi-
cal mechanism that makes one sensitive to what the other does. 
And since the electrons can be carried arbitrarily far apart, such 
a mechanism would have to work at arbitrary distances. Ein-
stein never accepted the physical reality of such a mechanism, 
and he concluded that the electrons had to have their disposi-
tions all along.

This conclusion in itself might seem rather obvious and mild. 
But everything we have said about pairs of electrons in the sin-
glet state and z- oriented Stern- Gerlach magnets holds as well for 
the electrons and  x- oriented magnets, or y- oriented magnets, or 
magnets oriented in any spatial direction. So if we conclude that, 
to avoid the spooky action- at- a- distance, each electron must have 
a definite disposition about how it will behave if confronted with 
a  z- oriented magnet, then it must equally have a definite dispo-
sition with respect to x- oriented magnets, y- oriented magnets, 
and so on. But we have already seen that we can’t prepare a beam 
of electrons so that we can both predict with certainty how each 
electron will react to a  z- oriented magnet and how it will react 
to an x- oriented magnet— that impossibility is an example of the 
Heisenberg uncertainty relation. Nonetheless, if we are to avoid 
Einstein’s spooky action- at- a- distance, each electron in a singlet 
state must have a definite propensity to react a particular way to a 
z  - oriented magnet and to an x- oriented magnet.
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There is no contradiction in saying that on one hand, it is 
impossible to prepare a beam of electrons so that all will be de-
flected up if confronted with a z- oriented magnet and all will be 
deflected down if confronted with an x- oriented magnet, while 
on the other hand insisting that individual electrons have both 
these propensities. But if such individual electrons exist, standard 
quantum theory does not have the resources to represent their 
physical state. That was the issue as the EPR paper presented it: 
Is the quantum- mechanical description of a system complete 
(i.e., does it somehow represent all physical characteristics of the 
system)? Having rejected the spooky action- at- a- distance, EPR 
conclude that some physical characteristic of each electron must 
determine how it would behave in all these different experimen-
tal conditions, and therefore the quantum- mechanical descrip-
tion of the individual system is not complete. But as far as logic 
goes, one could reject their conclusion by embracing the notion 
of action- at- a- distance.

Einstein did not imagine that his rejection of action- at- a- 
distance could be subject to experimental test. In 1964, John Bell 
proved him wrong.

exPerimenT 8: ghZ/TesTs of bell’s inequaliTy

We have arrived at the strangest and most counterintuitive phe-
nomena predicted by quantum theory and confirmed in the lab. 
We will mention two related examples of the general phenom-
enon, one conceptually simpler but experimentally harder, the 
other experimentally easier to confirm but slightly more compli-
cated to analyze.

The conceptually simpler example was discovered in 1989 by 
Daniel Greenberger, Michael Horne and Anton Zeilinger, in-
spired by reflection on Bell’s work. The experimental situation 
they envisage bears obvious similarities to Bohm’s spin version of 
the EPR example, except three particles are involved rather than 
two. This triple of particles is created in a particular quantum- 
mechanical state and allowed to separate to arbitrary distances 
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apart, where each will either be subjected to an x- oriented mag-
net or to a z- oriented magnet (Figure 12). We can imagine the 
choice between the two experimental arrangements for each par-
ticle being made at random in whatever way one likes: by whim, 
by a random number generator, by flipping a coin, and so forth. 
The predictions are independent of how this choice happens to 
be made. Figure 12 depicts two z- oriented and one x- oriented 
magnets.

If we denote the particles by 1, 2, and 3, then the possible local 
experimental conditions can be labeled X1, Z1, X2, Z2, X3 and Z3. 
The global experimental situation in a particular run of the ex-
periment will specify the situation for each of the three magnets, 
so there will be eight possible global experimental configurations: 
X1X2X3, X1X2Z3, X1Z2X3, X1Z2Z3, Z1X2X3, Z1X2Z3, Z1Z2X3, and Z1Z2Z3. 
If we decide which way to set each apparatus by the flip of a fair 
coin, then we would expect each of these global conditions to ob-
tain about once in every eight runs of the experiment.

Of these eight possible global configurations, currently we are 
only interested in four: X1X2X3, X1Z2Z3, Z1X2Z3, and Z1Z2X3. After 
many runs of the experiment, we would notice the following 

Figure 12
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unbroken regularities. When the X1X2X3 configuration obtains 
(i.e., when all three magnets are oriented in the x- direction), then 
an odd number of the particles (either one or all three) are de-
flected in the “up” direction. But when any of the other three con-
figurations is chosen, so one magnet is in the x - direction and the 
other two in the z- direction, an even number of particles (either 
zero or two) are deflected in the up direction. That is the observed 
phenomenon.

Why is this so puzzling? First of all, note that in any of the 
four arrangements, knowing two of the outcomes allows us to 
predict the third with certainty. In this regard, the situation is 
similar to the EPR set- up, where the result on one side provides 
perfect information about the result on the other. And by exactly 
the same reasoning as in EPR, we conclude that either each par-
ticle is always physically disposed to react in a particular way to 
each possible setting of the magnet, or some spooky action- at- a- 
distance takes place. For if any one particle did not have a definite 
disposition about how it would behave, how could the other pair 
of particles arrange their reactions to maintain the proper statis-
tics unless they were somehow influenced by the unpredictable 
behavior of the third particle? For example, when particle 1 en-
counters an  x- oriented magnet, if it could either be deflected up 
or be deflected down, with nothing in its physical state determin-
ing which, how could the other particles be certain to show the 
correct number of “up” outcomes if what they do is completely 
unaffected by what particle 1 does?

So just as in the EPR argument, we have a choice: either the 
outcomes of the experiments are predetermined locally by the 
physical states of the individual particles, or there must be some 
spooky action- at- a- distance. But unlike the EPR case, it is easy 
to prove that the outcomes can’t be predetermined just by the 
physical state of the particle that reaches each apparatus, inde-
pendently of what happens to the others. The mathematical proof 
of this is simple and is wonderfully exposited by an argument due 
to David Mermin.

Our question is this: Can we prearrange the behavior of 
our three separated particles so that— each being completely 
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insensitive to which experiment is carried out on the others— the 
predictions listed above are certain to obtain? To accomplish this, 
each particle must be physically predetermined to react a certain 
way to each possible orientation of the magnet. For if it were not, 
if some irreducible randomness were involved in producing one 
outcome, then the other particles would have to be sensitive to 
how the random element came out in order to adjust their be-
havior properly. Similarly, assuming no physical dependency of 
any of the particles on the setting of the distant magnets, these 
predetermined reactions must guarantee the right results no mat-
ter how the distant magnets are set. In short, we must somehow 
fill in the circles in Figure 13 with “up” or “down,” specifying how 
each particle would react to each magnet, in a way that respects 
the predictions for each of the four global experimental arrange-
ments. There must be an odd number of “ups” along the dashed 
X1X2X3 row and an even number of “ups” along the other three 
indicated rows.

But it is clear that no specification can meet these require-
ments. If it could, then adding the total number of ups along 
all four rows would yield odd + even + even + even = an odd 
number of ups. However, the entry on each circle would have 
been counted twice, since each circle lies at the intersection of 
two rows. Since each circle is counted twice, no matter how we fill 
in the circles, the total count of all four rows must yield an even 
number of ups. QED.

The EPR argument shows that if the quantum mechanical pre-
dictions are to hold without any spooky- action- at- a- distance (i.e., 
without any physical sensitivity of any particle to which particu-
lar experiment is performed on a distant particle, or to an inde-
terministic outcome produced by the distant particle), then the 
reaction of each particle to each possible experimental arrange-
ment it might encounter must be predetermined by its own phys-
ical state. But the GHZ argument shows that the set of possible 
reactions cannot be so predetermined in a way that is insensitive 
to the distant experimental arrangements. We are stuck with the 
spooky action- at- a- distance that Einstein so abhorred. This is an 
example of quantum nonlocality.
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The fact that this nonlocality is required by the predictions of 
quantum theory was first discovered by John Bell in 1964. Bell’s 
initial arguments did not use the GHZ set- up, with the three 
separated particles, but rather the EPR set- up for different spin 
experiments carried out on a pair of particles in the singlet state. 
Bell began by rehearsing the EPR argument that avoiding nonlo-
cality in this setting requires predetermining the behavior of each 
particle for all possible orientations of the magnet. But Bell went a 
step beyond EPR: Instead of considering only the cases where the 
two magnets are oriented in the same direction (and the particles 
are certain to display opposite outcomes), he considered the sta-
tistical predictions for cases where the magnets on the two sides 
have different orientations. Bell showed that there are limits on 
the strength of observed correlations between the sides for differ-
ent settings of the magnets if one assumes that the outcomes for 
each possible setting are predetermined and depend only on the 

Figure 13
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orientation of the magnet that the electron passes through. This 
limit is called Bell’s Inequality. Quantum theory predicts viola-
tions of this limit.

In particular, when the magnets on the two sides are mis-
aligned by 60°, instead of giving different outcomes all the time, 
they give them 75% of the time. And when they are misaligned 
by 120°, they give different outcomes 25% of the time. There is 
no way to preassign dispositions to individual particles that can 
recover these statistics in the long term.11 But if the outcomes are 
not predetermined in this way, then the electron on one side must 
be sensitive to which experiment is carried out, or what the out-
come is, on the other.

nexT sTeP

What we are ultimately interested in is how the physical world can 
be, given that it produces this sort of observable behavior. Feyn-
man despaired of the very possibility of such a precise physical 
account of even the two- slit phenomena. As we will see starting in 
Chapter 4, it is possible to explain how it works. Indeed, there are 
several different precise physical theories that can explain how 
it works by postulating an exact physical ontology and precise, 
mathematically formulated physical laws. But before turning to 
these alternative theories, we will discuss the thing that Feynman 
is happy to present: the standard mathematical techniques used 
by physicists to derive predictions about the sorts of experimental 
situations described above.

furTher reading

Clear introductions to the foundations of quantum mechanics are 
few and far between. The best available are noted here.

11 See Maudlin (2011) for more details.



Eight Experiments

35

Albert’s (1992) book is aimed at a philosophical audience and 
includes more discussion of conscious experiential states than 
the other books mentioned here. Bell (2004; especially chapters 
7, 15, 16, 17, 20, 22, 23, and 24) is not a single unified account, and 
different chapters are pitched at different levels of mathematical 
sophistication, but his book is still the most profound one we 
have. Bricmont (2016) is advocating for one particular theory, 
but he includes a lot of historical material and walks the reader 
through some of the mathematics. Ghirardi’s (2005) book covers 
more ground than the others and is written at a comfortable level 
for anyone who has had introductory physics. Norsen (2017) is a 
textbook on quantum foundations designed for undergraduates, 
containing homework problems and projects as well as a large 
dollop of history. Finally, Becker (2018) presents the most com-
prehensive, reliable, and readable account of the history of the 
development of quantum theory, drawing in part on the more 
scholarly and detailed work of Beller (1999).
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CHAPTER 2

The Quantum Recipe

whaT is PresenTed  in most standard textbooks on quantum phys-
ics is not a theory but a recipe: a set of techniques for making pre-
dictions. As a predictive mechanism, this recipe is unparalleled 
in history for both its scope and precision. This requires explana-
tion: What kind of physical structure of the world could give rise 
to the behavior that is so precisely and accurately predicted by the 
recipe? Before we can sensibly approach this question, we need 
to have some detailed understanding of what the recipe itself is. 
That is the topic of this chapter. We will confine ourselves to the 
simplest, most unsophisticated version of quantum physics: the 
nonrelativistic version dealing with spin- 1/2 particles, the level of 
most introductory textbooks. There are much more sophisticated 
and technically challenging types of quantum physics (e.g., quan-
tum field theory), but the fundamental interpretational and con-
ceptual questions we are interested in can be raised and discussed 
in this simpler setting. This presentation already has some slightly 
nonstandard aspects, which will be noted in the section titled 
“Eigen states, Eigenvalues, Hermitian Operators, and All That.” 
But for the purpose of understanding our eight experiments, this 
version of the quantum recipe serves admirably.

single ParTicle, no sPin

Our first three experiments— the Cathode Ray Tube, the Single Slit, 
and the Double Slit— concern the behavior of sequences of single 
particles. Or, more exactly, they concern the formation of single 
marks or flashes on a screen, produced sequentially, without ar-
rangements for pairs of particles to interact. No electric or magnetic 



The Quantum Recipe

37

fields are involved beyond the internal workings of the cathode and 
anode, so the issue of the magnetic properties of the electrons does 
not come up. How does the recipe work in this setting?

The first step in the recipe requires associating a mathematical 
object called a wavefunction with each electron. The term “wave-
function” is used in different ways in different discussions of 
quantum theory, but throughout this book, we will be fastidious 
about its meaning. A wavefunction is a purely mathematical item 
used for calculational purposes in the quantum recipe. Specifying 
a wavefunction for a physical system means associating a particu-
lar mathematical object with that system, no more and no less. 
Since a function is an abstract mathematical entity— a mapping 
from one set of objects to another— a wavefunction should, on 
the face of it, be a mathematical object. We leave aside for now 
the question of what (if anything) in the physical world this wave-
function represents. Various proposals about this can be distin-
guished. One might maintain that the wavefunction represents 
some physical feature of individual physical systems, in which 
case we will call that feature the quantum state of the system. Or 
one might maintain that the wavefunction only represents the 
statistical features of collections of physical systems but noth-
ing about single systems. Or one might maintain that the wave-
function represents nothing intrinsic about any physical system 
at all: Instead it represents some agent’s state of information or 
state of belief about a system. These are incompatible accounts of 
what the wavefunction of a system represents. But the advocates 
of these various views will still agree about which mathematical 
wavefunction ought to be associated with a system in a particular 
experimental configuration.

If we are dealing with single particles, disregarding their mag-
netic properties, then the wavefunction takes the mathematical 
form of a complex square- integrable function over space, as a func-
tion of time. Let’s take these features one at a time.

A complex function over space is a mathematical map-
ping that assigns a complex number to each spatial location. If 
we coordinatize the space with the usual Cartesian coordinates 
(x, y, z), then this function assigns a complex number to each set 
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of coordinate values. Complex numbers are sometimes presented 
in the form A + Bi, where A and B are both real numbers, and i 
is the square root of −1. For our purposes, it is more convenient 
to represent the complex numbers in the form Rei, where R is the 
amplitude of the complex number, and  is its phase.

Translating between these two representations of complex 
numbers is not hard. To go from the amplitude/phase representa-
tion to the real part/imaginary part representation, one just has to 
recall this formula for raising e to an imaginary power:

ei = cos() + i sin().

This yields Rei = R cos() + Ri sin(), so A = R cos(), and 
B = R sin(). In the other direction, given A + Bi, we have 
R = √(A2 + B2) and  = tan−1(B/A). (The mathematically inclined 
might note that this last formula does not have a unique solution, 
since we can add any multiple of  to  and still satisfy the equation, 
measuring  in radians.) The real part/imaginary part representa-
tion is particularly useful when we are adding complex numbers: 
(A + Bi) + (A + Bi) = (A + A) + (B + B)i. We just add the real 
and imaginary parts separately. The amplitude/phase representa-
tion is useful when multiplying complex numbers: Rei × Rei’ = 
RRei( +). We multiply the amplitudes and add the phases.

The complex conjugate of a complex number is obtained by 
changing the sign of the imaginary part: The complex conjugate 
of A + Bi is A -  Bi. In the phase/amplitude representation, this 
amounts to changing the sign of the phase: The complex con-
jugate of Rei is Re−i. The complex conjugate is indicated by an 
asterisk, so that (A + Bi)* = (A -  Bi), and (Rei)* = Re−i. The 
absolute square of a complex number is the number multiplied by 
its complex conjugate. The reader should be able to verify that the 
absolute square of (A + Bi) is A2 + B2, and the absolute square of 
Rei is R2. Because of this last identity, the absolute square is also 
called the squared amplitude.

The wavefunction of a single- particle system at a given time 
is usually symbolized by  (or (x)) to indicate it is a func-
tion of location in space) and the complex conjugate by *(x). 
Since (x) assigns a complex number to each spatial location, 
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the product *(x)(x) assigns a non- negative real number— the 
squared amplitude— to each location. This squared amplitude can 
be integrated over all space, which amounts to measuring the 
total volume under the function. A complex function is square 
integrable if this yields a finite number. A square- integrable func-
tion can usually be normalized, that is, rescaled so that when in-
tegrated over the whole space, the result is 1. If the total integral 
of a square- integrable function is N, then dividing the function 
by N will normalize it, assuming N is not zero. The wavefunction 
associated with a system is required to be normalized, for reasons 
that will soon become apparent.

Given what a wavefunction is, it is obvious that certain math-
ematical operations on wavefunctions are well defined. For ex-
ample, we can multiply any wavefunction by a real or complex 
number by multiplying its value at any spatial point by that num-
ber. Two wavefunctions (x) and (x) can be added: the value of 
( + )(x) at any point is just the sum of (x) and (x) at that 
point. If (x) = c(x) + d(x), where c and d are complex num-
bers, then we say that (x) is a superposition of (x) and (x). It 
makes no sense to ask whether a particular wavefunction is a su-
perposition or not, but only whether it is a superposition of some 
other wavefunctions. Every wavefunction is the superposition of 
others in many ways.

There is a special function 0(x) which has the value 0 at every 
spatial point. 0(x) plays the role of the zero of addition of wave-
functions, since (x) + 0(x) always equals (x). Every wave-
function has an additive inverse - (x), whose value at every point 
is the negative of (x), so that (x) + (- (x)) = 0(x). Due to 
these features (and a few more), the collection of wavefunctions 
forms a complex vector space, that is, a collection of items that can 
be added to each other and multiplied by complex numbers. The 
special function 0(x) is square integrable, but since the integral is 
zero, it cannot be normalized. If we demand that physical systems 
be associated with normalizable functions, 0(x) cannot represent 
any physical system.

So far, all we have asserted is that at any given time, the quan-
tum recipe requires us to associate with each electron a normalized 
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complex- valued function over space. But we have said nothing 
about 1) which such function should be associated with the sys-
tem 2) how this associated function evolves through time and 3) 
how predictions are to be derived from the function. These parts 
of the recipe are not all perfectly precisely formulated. The associa-
tion of wavefunctions with systems often proceeds via reasoning 
using classical physics. This procedure might seem conceptually a 
bit confusing, but if all we want is a functioning recipe, then it is 
adequate, so long as the instructions are clear enough.

To treat our first three experiments, we need one main rule 
for associating wavefunctions with systems: If an experimental 
arrangement, thought of in terms of classical physics, would pro-
duce particles with some nearly exact momentum, then the right 
wavefunction to use to represent it is approximately a complex 
plane wave.

A complex plane wave is a close cousin to the plane waves that 
occur in water, such as that depicted in Figure 3a. The parallel 
lines in that figure represent the crests and troughs of the waves. 
In a similar fashion, one can indicate the points in a complex field 
that have the same phase instead of the same height. In a com-
plex plane wave, these regions of equal phase form parallel lines. 
And just as the wavelength of a water wave is determined by the 
distance between successive crests or troughs, the wavelength of 
a complex plane wave is determined by the distance between suc-
cessive regions with the same phase.

We will make extensive use of the analogy between complex 
waves and water waves, but there is one important disanalogy to 
note. Water waves have only one degree of freedom at a point: the 
amplitude. Water waves are nothing but regular variations in the 
height of the water in space. So the squared amplitude of a water 
wave must also necessarily vary from place to place. But com-
plex waves can have constant amplitude and vary only in phase, 
as illustrated in Figure 14. This is the sort of complex plane wave 
associated with a particle with a perfectly exact momentum. In 
Figure 14, the momentum is horizontally to the right. Since the 
amplitude of such a complex wave is constant, the squared ampli-
tude is constant, rather than varying from place to place.
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Classically, a cathode ray tube would be regarded as a device 
for producing electrons with a (fairly) constant momentum col-
limated in a beam. Each electron that comes off the cathode is 
accelerated the same amount by the voltage potential between 
the cathode and the anode. Those electrons that pass through the 
aperture in the anode therefore have (approximately) the same 
momentum, in the direction from the cathode to the anode. Our 
treatment of the first four experiments will use a complex plane 
wave to represent these electrons.

We need to be more mathematically exact than this, because 
we must precisely specify the wavelength of our plane wave. Let 
us appeal to a rule that connects the classical treatment of this 
experimental situation with the quantum treatment. The connec-
tion was provided by Louis de Broglie, who formulated this rule 
for ascribing a wavelength to particles with a definite momentum:

 = h/p,

where  is the wavelength, h is Planck’s constant, and p is the mo-
mentum of the particle. (Classically, the momentum is mv, where 
m is the mass and v the velocity.) Using de Broglie’s formula, we 
can associate a definite sort of wavefunction with a particle that 
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would classically have been prepared to have a definite momen-
tum: a complex plane wave whose wavelength is h/p, where the 
direction of motion is orthogonal to the regions of constant phase.

To make predictions, we also need a rule for how these com-
plex waves evolve in time. We now consider the wavefunction as a 
function of both space and time (x, t). The rule for its change in 
time is provided by Schrödinger’s equation. In the nonrelativistic 
context, the abstract form of the equation is

iℏ 
( , )
t
x t

H
2

2ψ
=X(x, t),

where i is the square root of −1; ℏ is Planck’s constant divided 
by 2; ( , )

t
x t
2

2  quantifies how (x, t) changes over an infinitessimal 
amount of time; and HX is the Hamiltonian operator. An opera-
tor is a function that maps one wavefunction to another, and the 
“hat” over the H is used to indicate an operator. This general ab-
stract form of the Schrödinger equation has no real content until 
the operator HX is specified. Here, once again, an appeal is made 
to classical physics.

The Hamiltonian of a system is related to the classical notion of 
the total energy of the system. For a classical particle, that energy 
has two sources: the kinetic energy (“energy of motion”) and the 
potential energy, deriving from things like gravitational or elec-
trical or magnetic potentials. The classical kinetic energy of a par-
ticle of mass m is ½mv2. The potential energy depends on which 
sorts of potentials are present, but they are usually some function 
of the mass, electric charge, and so forth of the particles and their 
distance from one another. So in a classical setting, the total en-
ergy of a particle of mass m is usually given by the equation

E = (½)mv2 + V(x),

with V(x) being some function that depends on the experimental 
arrangement.

To specify Schrödinger’s equation, we need to create a Ham-
iltonian operator that is modeled on the equation above. For the 
moment, we will pretend that there is only one spatial dimen-
sion, x, that the particle can move in. The technical trick is to “put 
the hats on,” that is, to replace variables that represent physical 
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quantities in the classical equation (e.g., the velocity v and the po-
sition x of the particle), with operators. In the case of the position 
x, this replacement is very simple: the operator xV simply multi-
plies a wavefunction by the variable x, yielding a new wavefunc-
tion. Replacing v is slightly more complicated. Since the classical 
momentum p is mv, we can write v = m

p , and rewrite the kinetic 
energy as m2

1  p2. And now we use a basic instruction of the recipe: 
when putting a hat on p (i.e., changing the classical momentum 
into an operator), the operator to use is –iℏ x2

2 , that is, –iℏ times 
the spatial derivative of the wavefunction. The derivative operator 

x2
2  yields the slope of a function as one moves in the x- direction.

Following the instructions of the quantum recipe, we convert 
the classical formula for the total energy of a particle E = ½ mv2 + 
V(x) into a definition of the Hamiltonian operator:

( ) ( / ) ( ) ( ) .H mp V x m i x V x m x V x2
1

2
1

2
2 2

2 2

&2 2
&
2
2= + = − + =− +t t t tX

To deal with a particle that can move in all three spatial direc-
tions, we replace x with a three- dimensional position vector r and 
the spatial derivative in the x- direction with a three- dimensional 
spatial derivative . So a standard quantum physics textbook will 
present the Hamiltonian as

( )H Vm r2
2

2&
d= − + tX

and Schrödinger’s equation as

( , )
( ) ( , ).

r
ri

t
m V tt r2

2
2&

2
2 &

d
ψ

ψ−= + t: D

Whew!1

1 The rule of “putting the hats on”— replacing classical variables with 
operators— works unambiguously in many circumstances but not all. Here is a 
case where it is ambiguous. Classically, the expressions xp and px are mathemati-
cally equivalent: the product of position and momentum, But the operators x ̂p̂ 
and p̂x̂ are not the same. Consider applying them to the function f(x). x̂p̂f(x) 
= x̂ x22 f(x) = x x2

2  f(x), but p̂x̂f(x) = p̂xf(x) = x2
2 x f(x) = f(x) + x x2

2  f(x). In technical 
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The last couple of pages contain a lot of equations, which may 
be daunting to some readers. Don’t worry. We are not going to 
be calculating with these equations, but it important to see 1) 
how the quantum recipe arrives at precise equations to use and 
2) the way that appeal to classical physics motivates the choice of 
both the equation for how the wavefunction evolves in time and 
the choice of an initial wavefunction to associate with a system. 
Physicists who have extensive training in classical physics have no 
difficulty following the recipe in familiar experimental situations.

To get a sense of just how familiar these equations are, a quick 
comparison suffices. If there are no relevant potentials, so ( )V r 0=t  
(e.g., in empty space), Schrödinger’s equation becomes

( , )
( , ).

r
ri t

t
m t2

2
2&

2
2 &

d
ψ

ψ= −

The classical wave equation, which governs water waves and 
waves in elastic materials and waves in vibrating strings is

( , ) ( , ).t
u x t c x tu2

2
2 2

2

2
d=

The wave equation uses a second derivative in time, and u(x, t) is 
a real function rather than a complex function: u(x, t) represents 
the amplitude of the wave at a given place and time. The classical 
heat equation, which describes how the temperature distribution 
of, for example, a bar of metal changes is

( , ) ( , ),t
u x t x tu2

2
2

dα=

which looks even more like Schrödinger’s equation, except again 
u(x, t) is a real function, specifying the temperature. And since  
for a single particle is itself a function in physical space, we could 
write it as (x, t) or (r, t). So aside from the introduction of com-
plex numbers, the mathematics so far is quite familiar from clas-
sical physics.

terminology, p̂ and x̂ do not commute. This particular issue does not come up in 
our experiments.
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Indeed, the reader might well at this point wonder why the 
quantum recipe doesn’t just yield predictions that are extremely 
similar to those of classical physics. The mathematical formalism, 
aside from using complex numbers, is in some cases identical. So 
how can it lead to predictions that are at all surprising or shock-
ing to classically honed expectations?

But the quantum recipe has three distinct parts: rules for as-
signing a wavefunction to a system, rules (in this case, Schröding-
er’s equation) for how that wavefunction evolves through time, 
and rules for extracting predictions about observable phenomena 
from the wavefunction. So far, we have said nothing at all about 
this last, critical step.

Before confronting the last step, let’s see how the first two steps 
play out for Experiment 1. Thinking classically and initially re-
garding the cathode rays as classical particles with mass me (the 
mass of the electron) and charge qe (the charge of the electron), 
we can calculate from the voltage between the cathode and anode 
how fast the electron should be traveling when it reaches the 
anode and hence what its momentum mev would be. We there-
fore associate with the cathode ray a complex plane wave of wave-
length h/(mev). Since we are only interested in cathode rays that 
pass through the aperture in the anode, we initially restrict this 
plane wave to the region just in front of the aperture. And since 
there are no further potentials, we can use Schrödinger’s equation 
to calculate how the wavefunction will evolve in time. Assum-
ing that the aperture in the anode is much, much bigger than the 
wavelength, the plane waves will essentially just progress further 
ahead in the same direction until they reach the screen (as in Fig-
ure 3a). Then what?

If one took the analogy to classical waves even further, one 
would expect the wavefunction to interact with the screen. And 
since the wavefunction is spread evenly over an aperture- shaped 
area of the screen, one might expect that whatever effect that in-
teraction might engender, it would also be spread evenly across 
that area of the screen. And if one were dealing with a fairly strong 
beam of cathode rays, this would correspond to what one sees: 
a uniformly glowing patch of screen roughly the same size and 
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shape as the aperture in the anode (and a little fuzzy around the 
edges). But we have not been trying to make predictions about 
electron or cathode ray beams. We have been trying to make pre-
dictions about individual electrons. And in this case, which cor-
responds to turning the intensity of the cathode ray tube down, 
we know that we do not see anything uniformly spread across that 
area of the screen. Rather, we see individual, localized flashes or 
spots. Each flash occurs in the area that the wavefunction reaches, 
but each is also localized in a very small part of that region. If we 
let a lot of these spots accumulate over time, we find that they are 
roughly uniformly distributed over the region. But each particu-
lar flash is not.

There is nothing in the first two steps of the recipe that would 
suggest this sort of behavior. But again, since the recipe is just a 
recipe and not a theory, it is hard to see how it could reasonably 
suggest anything at all. What is needed, as I have been insisting, 
is just a rule: a set of instructions about how to use the wave-
function for making predictions. The requisite rule was originally 
suggested by Max Born, and hence is known as Born’s Rule. Born 
suggested using the wavefunction to define a probability measure, 
and then using that probability measure to make predictions 
about where an individual flash or spot will occur.

A probability measure, in the purely mathematical sense of 
that term, must have certain formal properties. A probability 
measure assigns numbers to a collection of possible outcomes. 
This collection is called a sample space. The measure assigns 
a real number between 0 and 1 (inclusive) to the measureable 
subsets of the sample space. To be a probability measure, the 
measure must assign 1 to the whole set and must be countably 
additive. The latter condition means that if the measure assigns 
the values pi to (possibly countably infinite) disjoint subsets I 
of the sample space, then it must assign the sum of the pi to the 
union of those subsets.

So if Born’s rule is to tell us how to use the wavefunction to 
make predictions by defining a probability measure, it must 
specify both what the outcomes are and what the measure is. 
In our experiments, an “outcome” is going to be a flash or spot 
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occurring on the screen at a particular location, so we can think 
of the probability measure as defined over the various locations 
on the screen. And since the wavefunction itself is (in this case) 
defined over physical space, we might be tempted to take the 
value of the wavefunction at the various locations on the screen to 
be the measure. But as is obvious, the wavefunction itself is not of 
the right mathematical form to play this role: It assigns complex 
numbers to locations in space, not real numbers between 0 and 1. 
However, if we take the squared amplitude of the wavefunction, 
we get just the right kind of thing to be a probability measure or, 
more precisely, a probability density. It assigns to every location a 
non- negative real number, and if we integrate these numbers over 
any region of the screen, we get a real number between 0 and 1. 
If we integrate the density over the entire screen (the whole “out-
come space”), then we get exactly 1, assuming that the wavefunc-
tion has been normalized. That is why, as was mentioned above, 
wavefunctions are usually required to be normalized, so their 
squared amplitude can serve as a probability measure.

With Born’s rule in place, the recipe is complete. To predict 
how likely it is that a flash will occur in any given region of the 
screen, compute the wavefunction in that region, take its squared 
amplitude, and integrate the result over the region. Where the 
squared amplitude is high, there is more likely to be a flash; where 
it is low less likely; and where the amplitude is zero, there is zero 
chance. Because of this connection between the wavefunction 
and probabilities, wavefunctions are sometimes called “probabil-
ity waves,” but this term is inaccurate. It is the squared amplitude 
of the wavefunction that yields a probability (or a probability 
density). A better terminology is “probability amplitude.”

It should be emphasized again that nothing in the first two 
steps of the recipe implies, or even suggests, that the squared am-
plitude of the wavefunction should be used to define a probabil-
ity. Certainly nothing in the classical analogs— water waves and 
the heat equation— has anything probabilistic about it. Born’s rule 
comes out of nowhere, and it injects probabilistic considerations 
into the physics without warning. Nonetheless, the resulting rec-
ipe works with spectacular accuracy.
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If we have a beam of electrons, each with the same wavefunc-
tion, then the recipe treats them as probabilistically independent: 
Where one flash occurs gives no information about where any 
other will occur. So if we let many, many flashes occur, it becomes 
overwhelmingly likely that their distribution reflects the prob-
abilities. For example, if the probability measure assigns 0.4 to 
some region on the screen, then very nearly 40% of the flashes 
will occur there. If the squared amplitude of the wavefunction is 
constant over some part of the screen, then a beam of electrons 
should produce a glow of constant brightness; and if the squared 
amplitude varies, so should the glow. In this way, our theory pro-
duces definite predictions about the overall pattern produced by 
many electrons over many runs.

But since Born’s rule assigns a probability for results of experi-
ments with single electrons, we get the correct results there as 
well. On a single run, there will be a single flash in a single place. 
The 0.4 calculated is the probability for that single flash to occur 
in the given region.

There is still one important puzzle about Born’s rule: Under 
what circumstances, exactly, is one allowed to use it? What are the 
sorts of outcomes to which these probabilities can be attached?

The answer is usually phrased in terms of measurement. Use 
Born’s rule, we are told, when a measurement is made on an elec-
tron, and use it to assign probabilities to the possible outcomes of 
that measurement (which should be various possible positions or 
locations for a position measurement). But as to what, precisely, 
a “measurement” is, when one occurs, and what exactly is mea-
sured, Born’s rule is silent. Such judgments about when to use the 
rule are left to the discretion of the physicist. In our examples, 
flashes on the screen are taken to obviously be position measure-
ments and the flashes themselves as “outcomes.” So in these par-
ticular cases, there is no practical impediment to following the 
recipe, even though in other situations it might not be obvious 
how to proceed.

What about other sorts of measurements? I have discussed 
Born’s Rule so far as a recipe for extracting predictions about po-
sition measurements from the quantum recipe, but, the objectors 
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may insist, this unjustifiably privileges position measurements 
over other sorts of experiments, such as momentum measure-
ments or energy measurements or spin measurements. Born’s 
Rule, they may say, covers all these sorts of experiments, not just 
position measurements. My presentation of the rule biases the 
account to favor positions of things over momentum or energy 
or spin.

John Bell addressed this issue directly and forcefully:

The second moral is that in physics the only observations 
we must consider are position observations, if only the 
positions of instrument pointers. . . . If you make axioms, 
rather than definitions and theorems, about the ‘measure-
ment’ of anything else, then you commit redundancy and 
risk inconsistency.2

Let’s unpack what Bell means. Suppose there is an experiment 
called a “momentum measurement,” or an “energy measure-
ment,” or a “spin measurement” on an electron, and one wants to 
make a prediction about how it will come out. And suppose that, 
for example, a momentum version of Born’s Rule is proposed that 
allows one to derive probabilities for the possible outcomes of 
such an experiment. To be concrete, suppose one derives a 50% 
chance that the momentum of the electron will be recorded as 
+2 and a 50% chance it will be recorded as −2. Some actual ex-
periment in the lab is carried out to check this prediction. But 
now let’s step back and treat the entire lab set- up— the original 
electron together with the laboratory apparatus— as a physical 
system (which it surely is!). We want physics to provide a predic-
tion for the position of the ink on the computer output at the end 
of the experiment. This is, of course, asking about the positions 
of things, so the position version of Born’s Rule can be invoked.

Bell’s point is this. Either the application of the position ver-
sion of Born’s Rule to the physics of the whole laboratory set- up 
yields a 50% chance that the spatial pattern “+2” is printed and 
a 50% chance that the spatial pattern “−2” is printed, or it yields 

2 Bell (2004), p. 166.
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something else. If it yields something else, then the momentum 
version of Born’s Rule is not actually providing predictions for 
the data produced by the experiment, so our theory has become 
inconsistent. That is, if we conceptualize it as a momentum 
measurement and use the momentum version of Born’s Rule, we 
get one set of predictions, but conceptualized as just a physical 
interaction that ends up with ink on paper, we get a different set 
of predictions. But what ends up on the paper is independent of 
how we conceptualize the situation! The momentum- rule pre-
diction for the outcome of the experiment therefore had better 
not differ from the position- rule prediction when applied to the 
whole apparatus. In contrast, if the position- measurement pre-
diction for the ink always agrees with the momentum- version 
prediction, then the momentum version of the rule is dispens-
able: We are actually comparing the predictions of the theory 
against the printed outputs of the lab equipment. If the theory 
gets that right, then it gets “the experimental data” right. In 
short, we need an empirical theory to get positions right, and if 
the theory does that, then it fulfills all requirements for empiri-
cal accuracy.

In any case, the particular experiments we want to account for 
are naturally understood as culminating in a position measure-
ment. When we measure spin using a Stern- Gerlach apparatus, 
the outcome is registered in the deflection of a particle up or 
down, that is, in the position of the particle. So our discussions 
can proceed smoothly while restricting the application of Born’s 
rule to position measurements.

What does our predictive recipe predict? For Experiment 1, 
as we have seen, the experimental apparatus would classically 
produce electrons with a fairly precise momentum, so we choose 
a wavefunction with the corresponding wavelength and a con-
stant amplitude to represent the electron. The spatial structure 
of the wavefunction is a little vague. It should start out roughly 
the shape of the aperture in the anode, but we let the amplitude 
drop gently to zero at the edges (gently with respect to the scale 
of the wavelength). Schrödinger’s equation then propagates the 
wavefunction forward in time. The 2 term in Schrödinger’s 
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equation is sensitive to how quickly the slope of the wavefunc-
tion changes in space, and the equation implies that the more 
quickly it changes in some spatial direction, the more rapidly the 
wavefunction expands in that direction. So by making the edges 
of the wavefunction drop gently at the sides, we ensure that the 
wavefunction itself does not spread much in those directions. The 
wavefunction propagates forward until it reaches the screen, and 
the squared amplitude is constant across a region of the screen 
roughly the shape of the aperture, dropping to zero outside that 
region. By Born’s rule, we predict an equal chance for the flash to 
occur in any equal- sized parts of that region, with no chance for 
a flash to occur outside. This is exactly what we observe when we 
run Experiment 1.

For Experiment 2, we add a second barrier with a much smaller 
hole or slit between the anode and the screen, and we attend only 
to flashes at the screen (i.e., to electrons that “make it through” 
the slit; Figure 3b). The overall situation is quite similar to Experi-
ment 1, except that as we make the slit progressively smaller, we 
eventually reach a point where the wavefunction just beyond the 
slit cannot taper off gently to zero on the scale of the wavelength. 
If the slit itself is only as wide as the wavelength, for example, 
then the slope of the wavefunction must vary fairly rapidly in the 
region just beyond the slit. And as we have seen, Schrödinger’s 
equation implies that a wavefunction whose slope varies greatly 
in a spatial direction also spreads rapidly in that direction. Hav-
ing been confined to a very narrow slit, then, the wavefunction 
subsequently spreads out, resembling a circular wave rather than 
a plane wave. The narrower the slit is (relative to the wavelength), 
the greater the spread will be. This yields exactly the behavior ob-
served in Experiment 2.

Another detail fits as well. If we increase the voltage between 
the cathode and the anode, then classically, we expect the elec-
trons to have a higher momentum. But in the recipe, higher mo-
mentum means shorter wavelength. So a slit that causes a lot of 
diffraction at a low voltage should produce less and less diffrac-
tion at higher voltage, as the wavelength becomes small compared 
to the slit. We see exactly this behavior.
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Finally, we come to Experiment 3, the Double Slit. Predict-
ing the outcome of the Double Slit using the recipe is almost 
child’s play once one important mathematical fact is remarked. 
Schrödinger’s equation has the very convenient mathematical 
feature called linearity. This means that just as two wavefunctions 
 and  can be superposed to form a third wavefunction, so, too, 
the solutions to Schrödinger’s equation generated by  and  can 
be added to yield the solution generated by  + . Here’s how to 
parlay that feature into a prediction for the Double Slit.

We know that with only one slit open, the wavefunction just 
beyond the slit spreads out in a semicircular pattern: Call this 
wavefunction (r, t) (Figure 15a). With the other slit open, we get 
the same pattern but moved slightly in space (Figure 15b). Call 
this (r, t). With both slits open, the wavefunction at t = 0, the 
moment it just passes the slits, is an equal superposition of (r, 0) 
and (r, 0): a wavefunction with one lump just in front of one 
slit and another equal- size lump just in front of the other. The 
linearity of Schrödinger’s equation then implies that the solution 
at all times is just the equally weighted sum of the solution for 
(r, 0) alone and the solution for (r, 0) alone. But both (r, t) 
and (r, t) are complex functions, and so their sum can exhibit 
interference (Figure 15c). In these images, we are using the appar-
ent height of the wave as a proxy for the value of the phase of the 
wavefunction, as illustrated in Figure 14.

Indeed, the interference manifests itself just as it does for water 
waves. The two parts of the wavefunction at t = 0, the parts in 
front of the two slits, have equal magnitude and phase, because 
the plane wave that hit the barrier had equal magnitude and 
phase in those locations. At any point on the screen where the dif-
ference in the distances to the two slits is a multiple of the wave-
length, the two superposing waves arrive with the same phase, 
and the resulting wavefunction has twice the amplitude of each. 
But if the difference of the distances is a half wavelength (or 3/2, 
or 5/2, etc.), then the two superposing wavefunctions have oppo-
site phase and equal amplitude. Added together at that point they 
cancel out (ei( + ) = - ei), leaving the wavefunction with zero 
amplitude. By Born’s rule, a flash has no chance to occur there. 
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The alternating regions of high probability and zero probability 
yield the interference fringes as many flashes accumulate. The ar-
rangement of the interference bands follows from the wavelength 
of the wavefunction and the geometry of the slits and the screen.

The predictive recipe handles our first three experiments with 
relative ease. But why do the interference bands disappear when 
the monitoring proton is added?

mulTiPle inTeracTing ParTicles, no sPin

Experiment 4 adds a new wrinkle: we have to take account of 
both the electron and proton on each run. At a mathematical 
level, this turns out to be simpler than one might have guessed.

One’s first thought is that for an experiment involving two par-
ticles, the recipe should employ two wavefunctions, one for each 
particle. This is not what is done, and therein lies the key to the 
most surprising predictions derived from the recipe. For a single 
particle, the wavefunction is a complex function over physical 
space. But for multiple particles, the wavefunction is a complex 
function over the configuration space of the system.

Once again, we appeal to a classical picture of point particles 
to explain this notion. The configuration of a collection of point 
particles is a specification of where each of the particles is. For 
a single particle, this amounts to the specification of where that 
single particle is— the specification of a point in space— so for a 

Figure 15
(a) (b) (c)
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single particle system, the configuration space is isomorphic to 
physical space. We might represent the single- particle space by 
three coordinates (x, y, z). But if the system has an electron and a 
proton, specifying where they both are requires six coordinates: 
(xe, ye, ze, xp, yp, zp). So the configuration space of two distinguish-
able particles is a six- dimensional space, whose points are repre-
sented by a six- tuple of real numbers. This space is called R6. The 
configuration space of three distinguishable particles is R9, and 
in general the configuration space of N distinguishable particles 
is R3N. The wavefunction associated with such a system assigns a 
complex number to each point in the configuration space.3

There is one particularly simple way to generate a wavefunc-
tion over a two- particle configuration space. Suppose one has 
a single- particle wavefunction for an electron (xe, ye, ze) and 
a single- particle wavefunction for a proton (xp, yp, zp). Each of 
these wavefunctions assigns a complex number to each set of val-
ues for its coordinates. So one can just multiply these wavefunc-
tions together to get a wavefunction over the configuration space 
of the two particles: (xe, ye, ze, xp, yp, zp) = (xe, ye, ze) (xp, yp, zp). 
This is called a product state of the two- particle system.

Quantum theory would not be nearly so interesting if all mul-
tiparticle states were product states: In a product state, the behav-
ior of one particle is uncorrelated with the behavior of the other. 
As a purely mathematical matter, product states are very scarce 
in the set of all wavefunctions over our two- particle system. Most 
wavefunctions cannot be expressed as the product of a wavefunc-
tion for the electron with a wavefunction for the proton. Any 
wavefunction that cannot be so expressed is called an entangled 
state. Erwin Schrödinger introduced the term “entanglement” 

3 What if the particles are not distinguishable in any way? Then specifying the 
configuration of an N- particle system is just a matter of indicating a set of N points 
in physical space, since there is no further fact about which particle goes in which 
location. If the physical space is represented by R3, then the configuration space 
for N particles corresponds to all sets of N points in R3. In Dürr et al. (2006), this 
space is called NR3. The space NR3 is mathematically different from R3N, so a complex 
function over NR3 is mathematically different from a complex function over R3N.
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(“Verschränkung” in German) in his famous cat paper, and he 
wrote in 1935:

When two systems, of which we know the states by their 
respective representatives [i.e. wavefunctions], enter into 
temporary physical interaction due to known forces be-
tween them, and when after a time of mutual influence 
the systems separate again, then they can no longer be de-
scribed in the same way as before, viz. by endowing each of 
them with a representative of its own. I would not call that 
one but rather the characteristic trait of quantum mechan-
ics, the one that enforces its entire departure from classical 
lines of thought. By the interaction the two representatives 
(or - functions) have become entangled.4

Schrödinger envisages a situation that starts out in a product state 
and evolves, via an interaction, into an entangled state. That is 
precisely what happens in Experiment 4.

Before embarking on the analysis, let’s pause to recall that Feyn-
man described the Double Slit experiment as “a phenomenon 
which is impossible, absolutely impossible, to explain in any clas-
sical way, and which has in it the heart of quantum mechanics. In 
reality, it contains the only mystery.” But the Double Slit experiment 
makes no use of the entanglement of systems, and it is the simple 
Double Slit experiment that Feynman thinks cannot be modeled 
using classical probability theory. Yet 28 years earlier, Schrödinger 
had declared that entanglement was “the characteristic trait of 
quantum mechanics, the one that enforces its entire departure 
from classical lines of thought.” Curiously, the effect of entangle-
ment in the Double Slit with Monitoring is to make the interference 
pattern in the regular Double Slit go away. Feynman noted this phe-
nomenon, but never invoked entanglement to explain it.

All the tools we need to make predictions for this experiment 
are already in place. The electron effectively moves in only two 
dimensions: the plane in which the wavefunction propagates. And 

4 Schrödinger (1935), p. 555.
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the proton moves in only one dimension: up or down in the cavity 
depicted in Figure 6. So the relevant configuration space for this 
experiment is three- dimensional, and we can draw pictures of it.

Consider first what would happen if the lower slit were closed. 
If the electron gets through, the resulting wavefunction spreads 
out semicircularly from the upper slit, and the proton wavefunc-
tion moves entirely into the upper part of the cavity. We know 
this, because all the flashes associated with the proton occur 
there. If we block the upper slit, the electron part of the wavefunc-
tion spreads out from the lower slit, and the proton part moves 
to the lower part of the cavity. This behavior of the proton part 
is produced by an interaction potential in the Hamiltonian of 
the system. Without such a potential (which is a function of the 
distance between the electron coordinate and the proton coordi-
nate), the behavior of the proton would be uncorrelated to that 
of the electron. The wavefunctions for these two situations are 
depicted in configuration space in Figures 16a and 16b. Note that 
in these figures, the upward z direction now indicates the posi-
tion of the proton in its cavity. The “empty” parts of the diagram 
indicate regions of configuration space where the wavefunction 
is close to zero.

What if both slits are open? By the superposition principle, the 
wavefunction just beyond the slits is the sum of the wavefunc-
tions with each slit open. And by the linearity of Schrödinger’s 
equation, the evolution of that superposition is the superposition 
of their individual evolutions. So we get the wavefunction with 
both slits open by superposing Figures 16a and 16b, yielding Fig-
ure 16c. (The “waviness” of the wavefunction in these diagrams 
represents the complex phase of the wavefunction, while the 
upward and downward branching represents the position of the 
proton as it moves up or down.)

Mathematically, this is the situation. If the lower slit closed, 
then the system evolves into the product state upper(xe, ye, ze) 
up(xp, yp, zp), where upper(xe, ye, ze) is the dispersing wavefunction 
one normally gets for an electron going through the upper slit, 
and up(xp, yp, zp) is the wavefunction of a proton in the upper part 
of the cavity. If the upper slit is closed, then the system evolves 
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into the state lower(xe, ye, ze) down(xp, yp, zp), where lower(xe, ye, ze) is a 
wavefunction spreading out from the lower slit, and  down(xp, yp, zp) 
is the wavefunction of a proton in the lower part of the cavity. 
Therefore, by the linearity of the Schrödinger equation, the initial 
state
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which represents the electron as equally likely to go through each 
of the two slits and the proton initially in the central location, will 
evolve into the entangled state
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This entangled wavefunction is represented in Figure 16c.
But in Figure 16c, there is no longer any interference between 

the part of the wavefunction associated with the upper slit and the 
part associated with the lower: these two pieces of the wavefunc-
tion have become separated in configuration space because of the 
proton’s contribution to the configuration. The squared amplitude 
at the screen of the wavefunction in Figure 16c is just the sum of 
the squared amplitudes of Figures 16a and 16b at the screen. The 
Schrödinger evolution with both slits open entangles the elec-
tron and proton parts, even though the initial wavefunction is a 
product state. This separation of the wavefunction in configura-
tion space has nothing to do with the existence of any observa-
tion or visible result: the separation occurs via strict Schrödinger 

Figure 16
(a) (b) (c)
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evolution due to the strong coupling of the electron and proton. 
In the simple Double Slit experiment, the final wavefunction with 
one slit open overlaps the final wavefunction with the other slit 
open in configuration space. When we superpose the solutions 
to get the solution with both slits open, the two wavefunctions 
interfere. But when the proton and coupling is added, the two 
solutions no longer overlap in configuration space, so there is no 
interference.

The disappearance of interference bands in this experiment 
is due to decoherence. Roughly speaking, if we express a wave-
function (x, t) as the superposition a(x, t) + eibc(x, t), then 
(x, t)  has decohered just in case all present and future Born 
rule predictions are unaffected by the value of θ: |(x, t)|2   
|a|2|  (x, t)|2 + |b|2| c (x, t)|2. In such a case, there is no interfer-
ence between a(x, t)  and bc(x, t). The electron wavefunction, 
which displays interference when there is no monitoring proton, 
loses its interference when entangled in the right way with the 
proton. The more a given system interacts with other systems, the 
more entangled it becomes, and the more it tends to decohere. 
Experiments done on such a decohered system exhibit no interfer-
ence. So if one takes interference to be the calling card of quantum 
theory, entanglement and decoherence make the world appear less 
quantum mechanical. But since the cause of the decoherence is 
entanglement, by Schrödinger’s lights, the observable interference 
disappears because the world is more quantum mechanical!

Entanglement and the consequent decoherence explain why 
we do not encounter quantum interference effects in everyday 
life. Avoiding decoherence requires severely limiting the interac-
tions a system has with its environment (and even with parts of 
itself). Such isolation usually requires carefully prepared labora-
tory conditions.

If we slowly decrease the interaction potential between the 
electron and the proton, the two separated branches of the wave-
function in Figure 16c will slowly merge, and the interference 
bands will slowly reappear. When the potential is completely 
turned off, the proton and electron will no longer entangle at all, 
and the original double slit interference pattern reemerges.
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When Feynman comments on the monitored double- slit ex-
periment, he reports the moral in striking terms: “We must con-
clude that when we look at the electrons the distribution of them 
on the screen is different than when we do not look” and “If the 
electrons are not seen, we have interference!”5 This talk of “look-
ing” and “seeing” suggests that the state of the interference bands 
can only be accounted for if we can characterize acts of obser-
vation, and maybe even observers. Bell’s worries about whether 
a single- celled organism can make an observation lurk nearby. 
So we should be relieved to find that accurate prediction of the 
phenomenon requires no such thing. All we need to produce the 
right prediction is the right interaction potential between the 
electron and the proton in the Hamiltonian of the system. The 
proton need not, in any interesting sense, be an “observer” or 
“see” anything. Indeed, the proton need not, itself, produce any 
flash or other observable phenomenon: the analysis goes through 
just the same if there is no phosphorescent screen in the cavity. 
All that is needed is that the wavefunction divide into two non-
overlapping regions in configuration space.

single ParTicle wiTh sPin

The experiments using Stern- Gerlach magnets demonstrate that 
another physical degree of freedom of our electrons has to be 
mathematically represented in the wavefunction. This is accom-
plished by using wavefunctions that associate something more 
complicated than a single complex number with each point in 
configuration space. For spin- 1/2 particles, these wavefunctions 
associate pairs of complex numbers called spinors with each 
point. More precisely, a spinor is a matrix of two complex num-
bers [ ]βα  such that |a|2 + |b|2 = 1. |a|2 is the absolute square of the 
complex number a.

By what rules do we associate a particular spinor with an elec-
tron? First, we arbitrarily choose a direction in space, which we 

5 Feynman (1975), Volume 1, Section 37- 6.
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will call the z- direction. We know that we can prepare a beam of 
electrons so that if it is passed through a Stern- Gerlach magnet 
oriented in the z- direction, the entire beam will be deflected “up” 
(i.e., toward the pointy North Pole of the magnet). Such a z- spin 
up electron is associated with the spinor [ ]0

1 . A z- spin down elec-
tron is then associated with [ ]1

0 .
Note that every possible spinor can now be expressed in terms 

of these two: [ ]βα  = a[ ]0
1  + b[ ]1

0 , or, as we will write, a|z - > + b|z . >.
The normalization of the spinor such that |a|2 + |b|2 = 1 allows 

us to derive a probability measure from it, just as the normaliza-
tion of the spinless wavefunction allowed us to derive a probabil-
ity density. The way this probability is used to make predictions is 
straightforward: given an arbitrary spinor [ ]βα , if we pass an elec-
tron associated with that spinor through a Stern- Gerlach magnet 
oriented in the z- direction, the probability that it is deflected up 
is |a|2, and the probability it is deflected down is |b|2

.

So far, the spinor might appear to just be a mathematical 
device for storing information about the probabilities that an 
electron will be deflected one way or the other by a z - oriented 
Stern- Gerlach magnet. But it is much more than that. For the 
spinor can be used to make predictions about how the electron 
will behave if passed through a Stern- Gerlach magnet oriented in 
any direction. Here’s how that works.

Just as we associate the spinor [ ]0
1  with “up- spin in the z- 

direction” and [ ]1
0  with “down- spin in the z- direction”, so we can 

associate [ ]2
1 1

1  with “up- spin in the x-direction” and [ ]2
1

1
1
-  with 

“down- spin in the x- direction.” And just as an arbitrary spinor [ ]βα  
can be expressed as a[ ]0

1  + b[ ]1
0 , so, too, can an arbitrary spinor be 

expressed in terms of [ ]2
1 1

1  and [ ]2
1

1
1
- . Specifically, [ ]βα  is mathemati-

cally equivalent to ( ) [ ] ( ) [ ]2
1

2
1

1
1

2
1

2
1

1
1α β α β+ + − −  . It just takes a 

little algebra to verify this equivalence:

( ) ( )
2

1
2

1
1
1

2
1

1
1

2
1α β α β α β

α β
+ + +

+
= =: : =D D G

and

( ) ( ) .
2

1
2

1
1

1
2
1

1
1

2
1α β α β β α
α β

−− − = − = −
−: : =D D G
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Adding these two together gives [ ] [ ] [ ]2
1

2
1

2
2= =β
β
α

β
α

α β β α
α β α−
+ + −
+ + . So just 

as every spinor can be expressed as a complex weighted sum of a 
z- spin- up piece and a z- spin- down piece, so it can be expressed as 
the complex weighted sum of an x- spin- up piece and an x-spin- 
down piece.

Predicting what will happen if we send an electron represented 
by a certain spinor through an x- oriented Stern- Gerlach magnet 
proceeds in exactly the same way as for z- spin: first express the 
spinor as |x - >+|x . > with ||2 + ||2 = 1, then use ||2 as the 
probability that the electron will be deflected upward and ||2 as 
the probability it will be deflected downward. And the same game 
can be played with spin in the y- direction, using |y - > = [ ]i2

1 1  and 
|y . > = [ ]i2

1 1
- . The same sort of thing can be done for handling Stern- 

Gerlach magnets oriented in any intermediate direction.
This method for making predictions about experiments with 

Stern- Gerlach magnets has the Heisenberg uncertainty rela-
tions built in. Suppose, for example, we manage to prepare a 
beam of electrons so that every electron is deflected upward by 
a z- oriented magnet. The spinor associated with each electron in 
the beam must be |z - > = [ ]0

1 . What if we pass the beam through 
an x- oriented magnet? To make the prediction, we write [ ]0

1  as  
2

1 |x - > + 2
1 |x . > (check that this is right!). The recipe then predicts 

that there is a 50% chance of the electron being deflected up and a 
50% chance of it being deflected down. If we are using the predic-
tive recipe and are certain how an electron will be influenced by 
a z-oriented magnet, we must also be maximally uncertain about 
how it will be influenced by a magnet oriented in the x- direction 
(and similarly uncertain about the y- direction). If we are using 
the predictive recipe, then it is mathematically impossible to write 
down a spinor that allows us to make predictions with certainty 
in more than one direction, and the more certain we get in one 
direction the more uncertain we will be in the orthogonal direc-
tions. It is easy to see how all the phenomena observed in Experi-
ment 5 are predicted by the recipe.

The astute reader may at this point feel a nagging worry. The 
predictive recipe has three steps: 1) assign an initial wavefunc-
tion to the system, 2) use Schrödinger’s equation to evolve that 
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wavefunction in time, and 3) use Born’s rule to assign probabili-
ties to the outcome if a position measurement is made. But in 
describing how to deal with Experiment 5, we have used language 
like “if the electron is passed through a Stern- Gerlach magnet 
oriented in the z- direction.” It is not immediately clear how this 
kind of information gets incorporated into the recipe at all.

The only place that the presence of a particular magnet can 
affect the recipe is in the potential term in Schrödinger’s equa-
tion. It is this term that reflects how the electron interacts with 
other things. So a particularly configured Stern- Gerlach magnet 
(and the magnetic field it produces) makes its influence felt in 
this potential term. Just for show, the Stern- Gerlach interaction 
in the Hamiltonian is represented by the term ( ) Bm

e
2 $σ− & , where 

e and m are respectively the charge and mass of the electron, and 
σ represents the spinor and B  the magnetic field. Changing the 
direction of magnetic field changes the way this term influences 
the evolution of the wavefunction.

When we do a spin experiment or measure the z- spin of a par-
ticle, the outcome is always an event that happens at one place 
rather than another: a flash, for example, occurs in one region of 
the screen rather than another. But predictions for the location of 
flashes in space are derived, via Born’s rule, from the spatial part 
of the wavefunction rather than directly from its spinor part. This 
happens exactly because, by means of the sort of potential written 
above, the spin degrees of freedom can become entangled with 
the spatial degrees of freedom.

Here’s a quick example. We know that if we feed a z- spin 
up electron through a Stern- Gerlach magnet oriented in the z- 
direction, the outcome will be that the whole spatial part of the 
wavefunction will be deflected upward: there is no chance to later 
find the electron deflected down. Schematically, |z - >|middle>  
|z - >|upward>, where |middle> represents a spatial wave function 
for a beam directed at the middle region of the Stern- Gerlach 
magnet, |upward> represents a spatial wavefunction of a beam 
directed upward, and the arrow  represents time evolution of 
the wavefunction generated by Schrödinger’s equation. Similarly, 
|z . >|middle>  |z . >|downward>. Each of these wavefunctions is 
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a product state of a spinor part and a spatial part. But what if we 
feed an  x- spin up beam of electrons in?

The linearity of Schrödinger’s equation again does the job. The 
initial x- spin up beam is represented by |x - >|middle>, which 
is the same as ( 2

1 |z - > + 2
1 |z . >)|middle>, which is the same as 

2
1 |z - >|middle> + 2

1 |z . >|middle>. But we know how Schröding-
er’s equation evolves each of these pieces separately. So the evolu-
tion of the sum is just the sum of the evolutions:

2
1  | z - > | middle> + 

2
1  | z . > | middle> 

2
1  | z - > | upward> + 

2
1  | z . > | downward>.

In this last state, the spin part of the wavefunction has become 
entangled with the spatial part. Using Born’s rule, we predict a 
50% chance of a flash occurring in the upper region of the screen 
and a 50% chance of a flash in the lower region.

These same rules also allow us to predict outcomes of Experi-
ment 6 with the Mach- Zehender interferometer. As long as we 
do not appeal to Born’s rule, the evolution of the wavefunction is 
governed by Schrödinger’s equation, and spatially separated parts 
of wavefunctions can be recombined to predictable effect. Let-
ting |upper> now mean “proceeding along the upper path of the 
interferometer” and |lower> mean “proceeding along the lower 
path,” our x- spin up beam fed into the interferometer will evolve 
into 2

1 |z - >|upper> + 2
1 |z . >|lower>. But the structure of the inter-

ferometer allows the two paths to reconverge:

| z - > | upper>  | z - > | diagonal>, and

| z . > | lower>   | z . > | diagonal>,

where |diagonal> indicates a spatial trajectory along the diagonal 
path at the top of Figure 10. By linearity (once again), we get

2
1  | z - > | middle> + 

2
1  | z . > | middle> 

2
1  | z - > | upper> + 

2
1  | z . > | lower> 
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2
1  | z - > | diagonal> + 

2
1  | z . > | diagonal> =

| |z z
2

1
2

1> >- .+b l | diagonal> = | x - > | diagonal>.

We recover a beam of pure |x - > and we disentangle the spin 
from spatial degrees of freedom. No surprise that if we run the 
recombined beam through an x- oriented magnet, it all gets de-
flected upward.

What about Albert’s magical “total of nothing” box? It too can 
be straightforwardly treated. The effect of the applied magnetic 
field is to change the phase of the spinor of a particle that passes 
through it. In particular, the phase is changed by multiplying by 
-1: [ ]0

1  is converted to [ ]0
1- , [ ]2

1
1
1  changes to [ ]2

1
1
1
-
- , and so forth. Now 

if one applies such a change of phase to an entire wavefunction, 
the predictive recipe will give exactly the same statistical predic-
tions, since Born’s rule requires us to take the squared amplitude 
of the wavefunction and the squaring operation yields exactly the 
same result for ||2 as for |- |2.

But in our experimental configuration, we do not run the 
whole beam through the magnetic field: only the part on the 
lower path goes through. As a result, 2

1 |z . >|lower> changes into 
- 2

1 |z . >|lower>. When the two beams recombine, the calculation 
now yields:

2
1  | z - > | upper> - 

2
1  | z . > | lower> 

2
1  | z - > | diagonal> - 

2
1  | z . > | diagonal> =

| |z z
2

1
2

1> >- .-b l | diagonal> = | x . > | diagonal>.

The recipe predicts that every electron passing through the 
interferometer- plus- phase- shifter should be deflected downward 
by an x- oriented magnet.

Note that to derive these predictions, it is essential that one not 
employ Born’s rule in the following way while the electron is en 
route through the interferometer. Suppose one thought that when 
the recipe yields the state 2

1 |z - >|upper> -  2
1 |z . >|lower>, the ac-

tual physical state of the electron must be properly described by 
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either |z - >upper> or |z . >|lower>, with Born’s rule supplying a 
50% probability of each. Such an application of Born’s rule leads 
to trouble. For if the state is really |z - >|upper>, then the electron 
should have a 50% chance of being deflected upward by an x- 
oriented magnet if it encounters one later on, and if the state is 
really |z . >|lower>, then also it has a 50% chance of upward de-
flection by an x- oriented magnet. Either way, the electron should 
have a 50% chance of upward deflection. But in this experiment, 
that result is just empirically wrong: 100% of the electrons are de-
flected downward and none upward.

(It does not follow that there is no definite fact about which 
path the electron takes through the device! As we will see in 
chapter 5, according to one precise theory, each electron takes 
either only the upper path or only the lower path, with about 50% 
going each way. But according to this theory, the complete physi-
cal state of the electron is not described by either |z - >|upper> or 
|z . >|lower> on any particular run.)

Albert’s “total- of- nothing” phase- shifting device illustrates one 
important aspect of the predictive recipe: if some circumstance re-
sults in changes of phase in part of the wavefunction, this can result 
in empirically observable changes via interference. But what is rel-
evant mathematically must be a change in the relative phases of two 
parts of the wavefunction when they are recombined. The relative 
phase determines which parts of the wavefunction interfere con-
structively rather than destructively. In a simple two- slit water- table 
experiment, for example, systematically changing the phase of the 
water coming through one slit (e.g., changing crests into troughs) 
will move the places where there is constructive and destructive in-
terference at the screen. The interference bands will shift.

Water waves, being described by real numbers, have a sort of 
absolute phase: There are precise regions where the highest am-
plitudes (crests) and the lowest amplitudes (troughs) of the waves 
occur. The phase of the wavefunction, as a complex field, is dif-
ferent: the magnitude does not change, so there is no crest or 
trough. Mathematically, we ascribe a phase, ei, to each point in 
configuration space, but for predictive purposes, it is only the dif-
ference in phases that matter when two parts of the wavefunction 
are brought together by the Schrödinger evolution.
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eigensTaTes, eigenvalues, hermiTian oPeraTors, and all ThaT

The previous section treating spin avoids the technical apparatus 
that appears in standard introductions to quantum theory. Let us 
pause here to explore that apparatus. I will also explain why we 
have been avoiding it.

I have already introduced the notion of an operator on wave-
functions: An operator maps an input wavefunction to an output 
wavefunction. We represent operators by capital letters with hats, 
so OX can stand for a generic operator. Operators can have various 
mathematical properties. One important property is linearity. If 
OX is linear, then operating on the superposition of two wavefunc-
tions gives the same result as operating on the wavefunctions in-
dividually and then superposing the results. That is, for a linear 
operator, we have

( | | ) | | .O O O> > > >α ψ β φ α ψ β φ+ = +X X X
Linearity is a very important property to keep track of. The 

Hamiltonian operator, which generates the time evolution of the 
wavefunction in the Schrödinger equation, is a linear operator, 
and that mathematical property lies at the heart of some of the 
central interpretive problems for quantum mechanics. The fa-
mous Schrödinger cat argument relies only on the linearity of the 
Hamiltonian.

Given any operator OX, we can ask whether there are wave-
functions with the following property: OX |  > =  |  > for some 
complex number . When this property holds, we say that |  > 
is an eigenfunction or eigenstate of OX and that  is its eigenvalue. 
Knowing the eigenfunctions of a linear operator can simplify 
doing calculations. For example, suppose we want to know how 
a particular wavefunction |  > will evolve in time according to 
the Schrödinger equation. We need to know the effect of operat-
ing with the Hamiltonian operator HX on |  >. Let | 1 >, | 2 >, 
| 3 >, .  .  .  , | N > be a collection of eigenfunctions of HX with 
eigenvalues 1, 2, 3, . . . , N, respectively. If we can write |  > as 
a superposition of the eigenstates, then the calculation becomes 
simple:
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HX |  > = HX(a | 1 > + b | 2 > +  | 3 > + g +  | N >)

= aHX | 1 > + bHX | 2 > + HX | 3 > + g + HX | N > (by linearity)

= a1 | 1 > + b2 | 2 > + 3 | 3 > + g + N | N >.

If an operator is also Hermitian or self- adjoint, then its eigen-
values are guaranteed to be real numbers rather than complex 
numbers with an imaginary part.

In some approaches to understanding quantum theory, great 
interpretive weight is put on Hermitian operators. The “observ-
able properties” of systems are to be somehow associated with 
Hermitian operators. Furthermore, when one “measures” such a 
property, it is said, the possible outcomes of the measurement cor-
respond to the eigenvalues of the operator. To assign probabilities 
to the various outcomes, one expresses the wavefunction of the 
system under consideration as a superposition of eigenstates of 
the operator. The probability of getting a particular outcome is the 
square of the amplitude assigned to the corresponding eigenstate.

Here is a concrete example of this approach. The Hamilto-
nian operator is not just the generator of the time evolution of 
the wavefunction, it is also the operator usually associated with 
the classical quantity known as the total energy of the system. So 
suppose we have a laboratory situation set up to measure the total 
energy of a system, which happens to be assigned the wavefunc-
tion |  > above. We are then to conclude that the outcome of this 
experiment must be one of the numbers 1, 2, 3, . . . , N, and that 
the chance of getting 1 is |a|2, the chance of getting 2 is |b|2, and 
so forth. It follows that if a wavefunction predicts with certainty 
what the outcome of such an energy measurement will be, then 
the wavefunction is an eigenstate of the Hamiltonian operator.

This same approach applies to spin. For example, we can as-
sociate the z- spin of an electron with the matrix 1-[ ]0

1 0 , the x- spin 
with the matrix 0[1

0 1], and the y- spin with the matrix [ i
i0 - ]0 . These 

are called the Pauli spin matrices. Each of these 2 × 2 matrices is 
an operator on spinors, where the operation is implemented by 
matrix multiplication. The operations of the three matrices on an 
arbitrary spinor are as follows:
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It is now easy to verify that normalized eigenstates of the 
z- spin matrix are [ ]0

1  and [ ]1
0  with eigenvalues 1 and −1, respectively. 

The eigenstates and eigenvalues of the x- spin and y- spin matrices 
are left as exercises.

The problem with this whole standard approach— and the rea-
son we have ignored it— is that there is no prospect of using it to 
answer our basic questions. Consider, for example, Experiment 5. 
As a piece of physics, that experiment essentially involves the pre-
cise geometry and orientation of a Stern- Gerlach magnet and the 
magnetic field it creates. A truly fundamental and universal phys-
ics ought to treat this situation via physical description, irrespec-
tive of conceptualizing it as the “measurement” of anything. As 
such, what we want to account for is how certain marks or flashes 
are formed in certain places on a screen. This requires providing a 
physical characterization of the situation. But the approach out-
lined above short-circuits all the real gritty physics. Rather, we are 
invited to just somehow conceptualize the entire physical situation 
as (for example) a z- spin measurement, and the occurrence of a 
flash or mark as an outcome, and to assign statistics to the possible 
outcomes by the calculation outlined above. But none of these 
conceptual characterizations follows in any rigorous way from 
the physical description of the laboratory apparatus. In particular, 
since the various observable outcomes of the experiment differ by 
the location of various marks or flashes in space, we should de-
mand a story about how the spatial aspects of the wavefunction 
become entangled with the spin aspects. The standard approach 
sidesteps all of this by mere stipulation: We are told to regard the 
physical set- up as a measurement but are not told why this as-
sumption is legitimate, or how to determine whether some other 
laboratory arrangement is a measurement, and if so, of what.

So let us strongly reject the treatment of Hermitian operators, 
eigenstates, eigenvalues, and so forth as not- further- analyzable 
mathematical representations of concrete laboratory situations. 
The laboratory is a physical entity, and it should be subject 
to physical analysis. It must be that the eventual upshot of the 
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physical analysis accounts for the calculational utility of Hermi-
tian operators, eigenstates, eigenvalues, and the like. If we sim-
ply identify (without any further justification) a magnet with a 
certain geometry and orientation together with a phosphorescent 
screen as a z- spin measuring device, and associate the whole con-
traption with the matrix 1-[ ]0

1 0 , and further identify a flash in one 
region of the screen as a z- spin up outcome and a flash in another 
region as a z- spin down outcome, then the standard quantum 
recipe can be used to make predictions for an electron associated 
with a given wavefunction. But a completed physics should illu-
minate why just this sort of physical situation ought to be treated 
with this particular mathematics. The standard approach system-
atically hides this basic physical question from view.

We have been trying to stay true to the idea that physics is the 
theory of matter in motion (i.e., the theory that treats the dis-
position of matter in space- time). Following this approach, the 
outcomes of the experiments must be determined by where some 
matter ends up. For the physics to account for different outcomes, 
then, it must provide predictions for the locations of things. In 
the case of our spin experiments, unlike the first four experi-
ments, this required coupling the spinorial part of the wavefunc-
tion to the spatial part and then applying Born’s rule to the spatial 
part. The Hamiltonian associated above with the Stern- Gerlach 
apparatus illustrates how this can be done.

mulTiPle ParTicles wiTh sPin

We now have all the pieces in place to apply the recipe to Bohm’s 
version of the EPR experiment and to derive predictions of viola-
tions of Bell’s inequality. The main work is done by an entangled 
spin state of two or three electrons. As usual, we construct the 
entangled state by starting with unentangled product states.

Suppose we have a pair of electrons that begin in the same loca-
tion, with one traveling off to the right the other to the left. The one 
going to the right can have the spinor |z - > and the one traveling 
to the left |z . >. The resulting product state could be symbolized as 
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|z - , right>|z . , left>, indicating both the spatial and spin features 
of the wavefunction for each electron. Similarly, the spin states 
could be switched: |z . , right>|z - , left>. There is no entanglement 
in either of these states, and making predictions from them is easy. 
For example, in the first state, if both particles are passed through 
z- oriented magnets, the right- moving particle will be deflected up 
and the left- moving one down. If they are both passed through x- 
oriented magnets, then each has a 50- 50 chance of being deflected 
either way, with no correlations predicted between them. That is, 
finding out which direction one goes will not change the predic-
tion about the other. It will still be 50- 50.

By the superposition principle, we can form from this pair of 
states the entangled state

2
1  | z - , right> | z . ,left> - 

2
1  | z . , right> | z - , left>.

This is called the singlet state of spin. For convenience, let us 
indicate the spatial part of the wavefunction by just a subscript 
and write the singlet state as

2
1  | z - >R | z . >L -  2

1  | z . >R | z - >L.

What should we predict if we pass both electrons through 
z- oriented magnets followed by a phosphorescent screen?

The magnets will entangle the spinor of each electron with its 
spatial wavefunction. Recall that the spatial part of the wavefunc-
tion is defined over the configuration space of the system. In con-
figuration space, after the electrons pass the magnets, there will 
be a lump of the wavefunction in the region corresponding to the 
right- hand particle being deflected up and the left- hand particle 
down, and an equal- amplitude lump corresponding to the right 
being deflected down and the left up. So by Born’s rule, we pre-
dict a 50% chance of the right- hand flash occurring up and the 
left down, and a 50% chance of the right- hand flash being down 
and the left up. There is no chance that both with will be up or 
both down. In short, is it certain that the location of one flash 
will be up and the other down, but completely uncertain which 
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will be up and which down. Observing either flash renders one 
completely sure of where the other will be.

Einstein argued that in this case, where the two electrons can 
be arbitrarily far apart from each other, we cannot accept that 
what happens to one electron can have any physical influence or 
effect on the other. But absent such “spooky action- at- a- distance,” 
it follows that each electron must be predisposed all along to be 
deflected the way it is: otherwise, how could the second electron, 
uninfluenced by the first, always behave the opposite way? The 
predictive recipe does not specify which electron will go which 
way, so Einstein’s conclusion is that the predictive recipe must not 
be representing all the physical facts. The wavefunction evidently 
(he argued) does not actually reflect all the physical characteris-
tics of the electrons. A completed physics should do better.

But even odder things happen. What if, instead of orient-
ing both magnets in the z- direction, we orient them in the x- 
direction? We have the resources to answer this: just rewrite the 
singlet state in terms of x- spin rather than z- spin:
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1 x > x > x > x >R L R L- . . -
- -^ h.6

6 If you, dear reader, are anything like the author, your eyes have just glazed 
over and you have decided to give me credit for getting my math right and skipped 
the details. Please don’t! It’s just a little painless algebra that anyone can do, and 



Chapter 2

72

Except for the factor of −1 (which makes no difference to the 
Born’s rule predictions, as we have seen), the singlet state has ex-
actly the same mathematical form when expressed in terms of 
x- spin as it does when expressed in terms of z- spin. So the pre-
dictions for the case of two x- oriented magnets are just the same: 
50% that the right electron is deflected up and the left down, and 
50% that the right is deflected down and the left up. And if Ein-
stein’s argument works for z- spin, it also works for x- spin: absent 
spooky- action- at- a- distance, the way each electron would react 
to an x-oriented magnet must be physically predetermined and 
independent of what happens to the other electron. But now the 
quantum formalism is in serious trouble: Each electron would 
have to have a predetermined z- spin and a predetermined x- 
spin, but no spinor permits simultaneous prediction of both with 
certainty. Therefore, Einstein would conclude, the wavefunction 
must be leaving something out.

Not only can we get the predicted perfect correlations of the 
EPR argument out of the predictive recipe, we can also make pre-
dictions when the magnets on the two sides are misaligned. This 
sort of set- up was originally used by Bell to prove his result.

There are two ways to approach this. Suppose the magnet on 
the left is oriented in the z- direction and the one on the right is 
oriented in the z- x plane but is offset by 60° from the z- direction. 
It would then be most convenient to rewrite the singlet state 
in yet another way, in terms of z- spin on the left and 60°-spin 
on the right. The 60°-spin- up spinor is [ ]/

/
1 2
3 2 , and the spin- down 

spinor is [ ]/
/

2
2
3

1
- . (In general, the spin- up spinor for a magnet ori-

ented at an angle  in the z-x plane is [ ]( / )
( / )

sin
cos

2
2


 , and the spin- down 

spinor is [ ]( / )
( / )

cos
sin

2
2
θ
θ

− . If the magnet is not oriented in the z- x plane, 
then the spinor will contain some imaginary components.) So 
we have |60° - > = 3

2 |z - > + 2
1|z . > and |60° . > = 2

1|z - > -  3
2 |z . >. 

Solving for |z - > and |z . > in terms of |60° - > and |60° . >  
yields

doing it produces a sense of both accomplishment and understanding that can be 
acquired in no other way.
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| z - > = 3
2  | 60° - >+ 2

1 | 60° . > and

| z . > = 2
1 | 60° - > -  3

2  | 60° . >.

The singlet state 2
1 |z - >R|z . >L -  2

1 |z . >R|z - >L is therefore math-
ematically the same as

| | |

| | |

| | | |

| | | | .
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The empirical predictions for our experimental situation— 
with the magnet on the left set in the z- direction and the magnet 
on the right in the 60°- direction— can be read off this state. The 
magnets will entangle the spin degrees of freedom with the spa-
tial degrees so that, for example, |60° - >R gets associated with the 
spatial part of the wavefunction for the right- hand electron prop-
agating along the “up” output channel. By Born’s rule, the ampli-
tudes 3

8, 8
1 , and - 8

1  are squared to yield the probabilities for the 
four possible outcomes: 83 chance that the flash on the right occurs 
in the “up” region of the 60° apparatus and the flash on the left 
occurs in its “down” region; 8

1 that both occur down; 8
1 that both 

occur up; and 8
3 that the flash on the right occurs in the “down” 

region and the flash on the left occurs in the “up” region. Overall, 
there is a 3

4 chance that the flashes give opposite results and 4
1 that 

they give the same result.
What if we decide to orient the magnet on the left in the z- 

direction but have not yet decided what, if anything, to do on 
the right? Just looking at the singlet state 2

1  | z - >R | z . >L - 

2
1  | z . >R | z - >L, we would naturally take Born’s rule to yield a 50% 
chance of each possible outcome on the left. Now suppose that, in 
fact, the flash on the left is “up.” How do we take account of that 
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result in the recipe to make further predictions about the right- 
hand electron?

The standard mathematical procedure is called collapse of 
the wavefunction. That is, given that the initial wavefunction is 

2
1  | z - >R | z . >L -  2

1  | z . >R | z - >L and given that the flash on the left 
was up, we simply discard the term of the wavefunction contain-
ing | z . >L. We are then left with just - 2

1  | z . >R | z - >L, which gets 
renormalized to | z . >R | z - >L. Our entangled state has become a 
product state, and we conclude that, for further predictive pur-
poses, the right- hand electron can be ascribed the state | z . >R. It is 
easy to check that this procedure yields the following conditional 
prediction: If the right- hand magnet is oriented in the z- direction 
and the flash is in the “up” region, then the probability for a the 
left- hand flash to be down should that electron be passed through 
a z- oriented magnet is 1, and the probability for the flash to be 
down if passed through a 60°- oriented magnet is 3

4.
This collapse of the wavefunction cannot be produced by 

Schrödinger evolution of the two- particle system— the linearity of 
the Schrödinger equation ensures that. Indeed, the exact physical 
implications of this mathematical procedure are hotly disputed. 
In some theories, as we will see, the mathematical collapse closely 
mirrors a real physical evolution. So- called Quantum Bayesians 
liken it instead to a mere change of beliefs: updating one’s subjec-
tive degrees of credence on receipt of new information. In other 
theories, it has quite a different status. But once again, we are not 
yet in the business of drawing physical or ontological or dynami-
cal conclusions at all: We are just concocting a practical recipe for 
making predictions.

But the reader might well wonder, doesn’t the exact status of 
this “collapse postulate” have further empirical consequences? 
After all, we are already acutely aware of how different terms of 
a wavefunction can (through Schrödinger evolution) come to in-
terfere with each other and thereby produce observable effects. 
If a term in a wavefunction is just thrown away or annihilated, 
then, obviously, no further interference can be produced by it. 
So if the wavefunction always evolves by Schrödinger’s equation, 
and no term ever disappears, surely there must be circumstances 
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in which one gets different predictions than one would get using 
a mathematical collapse at some point.

This conclusion is correct. In principle, a no- collapse recipe 
makes different empirical predictions than a collapse recipe. That 
invites two questions: 1) Does the “official” quantum recipe con-
tain collapse or not? and 2) Why haven’t experiments been done 
to settle whether, to get the right predictions, there needs to be 
a collapse? The answer to the first question is that the quantum 
recipe is somewhat vague at exactly this point. Some textbooks 
directly postulate the collapse (e.g., Shankar 1980, p. 120, pos-
tulate III). Others implicitly rely on it, but its status is unclear. 
In the famous textbook by Landau and Lifshitz (1965), for ex-
ample, a curiously incoherent story is told in which a “classical 
apparatus” interacts with a “quantum object.” Both are ascribed 
wavefunctions to which the Schrödinger evolution is applied, but 
in addition, it is demanded that the “classical apparatus” have a 
“physical quantity” called the “reading of the apparatus,” which 
must always be definite. By this unprincipled dodge, Landau and 
Lifshitz are able to “derive” the collapse of the quantum object’s 
wavefunction (see Landau and Lifshitz 1965, pp. 21– 22). As to the 
second question, although in principle there are empirical dif-
ferences between the predictions of a collapse and a no- collapse 
recipe, as a practical matter it can be extremely difficult to real-
ize the experimental conditions in which these differences can be 
checked. Recall that the issue here is how to make further predic-
tions after an application of Born’s rule (i.e., after a position mea-
surement has been made). It is not entirely clear which physical 
situations this refers to, but in practice, such situations involve the 
use of macroscopic (and hence very complex and complicated) 
bodies. As a practical matter, manipulating and modeling such 
bodies with the degree of precision required to manifest these dif-
ferent predictions is an extremely difficult task. So for all practi-
cal purposes, it often makes no predictive difference whether one 
collapses the wavefunction before the final application of Born’s 
Rule. As we have already seen in the Double Slit with Monitor-
ing experiment, entanglement and decoherence tend to destroy 
interference effects. Collapsing the wavefunction before that final 
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outcome would destroy interference between parts of the super-
position as well, but if the linear Schrödinger evolution already 
has decohered the wavefunction, this is not noticeable.

The only experiment left to discuss is the GHZ experiment. 
Since it involves three entangled particles, it is a bit more complex 
than the EPR experiment, and I won’t go into all the details. But at 
least a glance will help.

We know that the GHZ state is an entangled state, and that 
it predicts (among other things) that if all three magnets are 
aligned in the x- direction, there will certainly be an odd number 
of “up” results. Calling the three electrons A, B, and C, the only 
product spin states that yield this behavior are | x - >A | x - >B | x - >C, 
| x - >A | x . >B | x . >C, | x . >A | x - >B | x . >C, and | x . >A | x . >B | x - >C. 
The GHZ state must therefore be a superposition of these four 
states. In fact, an equal superposition of all four with the right 
phase relations (reflected in the minus signs) serves our purpose:

GHZ = 2
1 | x - >A | x - >B | x - >C - 2

1 | x - >A | x . >B | x . >C - 

2
1 | x . >A | x - >B | x . >C - 2

1 | x . >A | x . >B | x - >C.

Each amplitude is either 21 or -2
1, so when we square the ampli-

tude to get probabilities, we find that each outcome has a chance 
of .25. To check what happens if the magnets are aligned in the 
z- direction for particles A and B but the x- direction for particle 
C, just replace | x - >A and | x . >B with their expressions in terms 
of | z - > and | z . > and calculate (see Problem 2 at the end of the 
chapter).

We have now exposited enough of the quantum recipe to 
allow us to derive predictions for many experimental situations. 
Those predictions will be perfectly accurate. If all one wants out 
of a physical theory is such an accurate prediction- making ma-
chine, then there is little need to read the rest of this book. The 
recipe is a little vague here and there— how to arrive at an initial 
wavefunction, how to specify a Hamiltonian, and (quite strik-
ingly) when to appeal to Born’s Rule— but in practice the vague-
ness doesn’t matter. Appeals to classical physics and “common 
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sense” (e.g., that the flashes on the screen are the sorts of thing 
that ought to be predicted by Born’s Rule) suffice in most cir-
cumstances. As John Bell insisted, “ORDINARY QUANTUM 
MECHANICS (as far as I know) IS JUST FINE FOR ALL 
PRACTICAL PURPOSES.”7

What the quantum recipe does not resolve, what it does not 
even purport to address, is what the physical world is like such 
that the quantum recipe works so well. To answer this question, 
we need not more recipes, or better recipes, but something quite 
different from a recipe. We need a physical theory, a clear speci-
fication of what there is in the physical world and how it be-
haves. It is a plain fact about the world that the quantum recipe 
is an excellent predictive apparatus. That fact needs to be ex-
plained. And the recipe itself does not have the right form to 
serve as an explanation, because it is not a theory. The recipe 
itself does not say, for example, which parts of the mathematics 
used in the recipe represent physical features of the world and 
which do not.

In the next chapter, we begin our examination of several ways 
to construct a physical theory that explains the success of the 
quantum recipe. We start with the status of the wavefunction.

Problems
1) Find normalized eigenstates and their eigenvalues for 

the x- spin and y- spin matrices 0[0
1

1] and [ i
i0 - ]0 .

2) By rewriting the GHZ state, show that if one orients 
the magnets for particles A and B in the z-direction, 
the recipe predicts with certainty that there will be 
an even number of “up” outcomes. Would this still be 
the case if the original state were 2

1 | x - >A | x - >B | x - >C 
+ 2

1 | x - >A | x . >B | x . >C + 2
1 | x . >A | x - >B | x . >C + 

2
1 | x . >A | x . >B | x - >C?

3) Figure 17 depicts an experimental arrangement. A 
z- oriented Stern- Gerlach magnet is followed by two 

7 Bell (2004), p. 214. Bell employed the acronym FAPP to represent “For All 
Practical Purposes.”
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x- oriented magnets, one in each output channel, and 
then the downward channel of one of these is recom-
bined with the upward channel of the other. The re-
combined middle beam is then fed through a second 
z- oriented magnet. Suppose an | x - > electron is fed 
into this device. What is the chance that a flash appears 
in the upward output channel of the second z- oriented 
magnet? What if an | x . > electron is fed in? What 
would happen if the top and bottom output channels 
were recombined instead of the middle two?

furTher reading

For those readers with some background in mathematics and 
physics, more particular experimental arrangements are dis-
cussed and many more problems offered in Norsen (2017). That 
book is designed to be an introduction to quantum mechanics 
with a specific emphasis on foundational and conceptual issues, 
pitched at the introductory undergraduate level.

Figure 17

source 
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CHAPTER 3

The Wavefunction and the Quantum State

The quanTum reciPe  requires that one ascribe a wavefunction1 to 
a system, but that fact alone tells us nothing about the physical 
state or physical properties of the system. Does the wavefunction 
represent any physical feature of an individual system at all? If 
so, does it somehow represent all physical features of the system 
or only some of them? This is the first question to face in trying 
to draw ontological consequences from the quantum formalism.

A theory according to which the wavefunction does represent 
some physical feature of an individual system has been called a 
-ontic theory.2 If the wavefunction does not represent any physi-
cal feature of an individual system, what does it represent? His-
torically, two prominent approaches have sought to deny any sort 
of direct ontic significance to the wavefunction.

The first, which we can call -statistical, maintains that wave-
functions do not properly characterize individual systems at all; 
instead they only characterize collections of systems. Some sort 
of “preparation procedure” can be used repeatedly to produce 
such a collection, and the wavefunction represents characteristics 
of the collection, not of any particular member of the collection. 
On such a view, one and the same individual system might cor-
rectly be ascribed different wavefunctions depending on which 
collective of systems it happens to be grouped with. There would 
be no fact about which wavefunction “really” characterizes the 
individual.

1 Some presentations of the quantum recipe allow one to ascribe a more ge-
neric mathematical object called a density matrix to a system. We will address this 
wrinkle anon.

2 This terminology was introduced in Harrigan and Spekkens (2010).
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The second non- ontic approach, which we can call -credal, 
maintains that the wavefunction doesn’t characterize the physical 
state of either a single system or a collection of systems. Instead, 
it characterizes only some cognitive agent’s information or beliefs 
about a system. This approach has been strongly advocated by 
some researchers in quantum information theory.3 According to 
this approach, changes in the wavefunction need not correspond 
to any physical change in a system at all but only to changes in 
what someone believes about the system. Sometimes -statistical 
and -credal are lumped together under the general rubric 
-epistemic theories, although the two approaches are somewhat 
different.

So at first pass, we have three views: 1) The wavefunction 
represents a real physical characteristic of an individual sys-
tem (-ontic), 2) the wavefunction represents only the collec-
tive features of an ensemble of systems (-statistical), and 3) the 
wavefunction represents only some agent’s information about an 
individual system (-credal). In general, a -ontic theory will 
postulate a wavefunction for the entire universe, representing a 
real physical feature that exists independently of any cognitive 
agents, a -statistical theory can make little sense of a wave-
function of the universe (since there is only one) but would be 
happy to associate wavefunctions with collections of systems 
shortly after the Big Bang, and a -credal theory can make no 
sense of wavefunctions ascribed to either individual systems or 
collections of systems without there also being some agent with 
beliefs about the systems. In contemporary discussions, both 
-statistical and -credal would be grouped together into the 
category of -epistemic theories.

Since any -ontic theory takes the wavefunction to be a math-
ematical representation of some real physical feature of individ-
ual systems, we can introduce a term for that feature: we will call 
it the quantum state of the system.4 The -statistical and -credal 

3 For an introduction to this line of thought, see Fuchs (2010).
4 This deliberate use of terminology is not standard. In many texts, the term 

“quantum state” is used for a mathematical item, an abstract representative of 
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theories deny that there is any such quantum state of an indi-
vidual system to be described.

One advocate of a -statistical approach was Einstein. He 
appreciated the tremendous empirical success of the quantum 
recipe but, as we have seen, used the EPR set- up together with a 
commitment to locality (no spooky action- at- a- distance) to argue 
that the quantum- mechanical description of a system cannot be 
complete. This conclusion alone does not rule out a -ontic the-
ory: The wavefunction might mathematically represent some real 
physical feature of an individual system but not every real physi-
cal feature. Nonetheless, Einstein was inclined against -ontic 
approaches and in favor of the idea that the wavefunction char-
acterizes only the statistical properties of collectives. This likely 
also flowed from a commitment to a different sort of locality that 
Einstein believed in, called separability. Separability requires that 
the physical states of spatially separated systems be specifiable in-
dependently of one another. Entangled wavefunctions, as we have 
seen, fail to have this feature, while product states do. So taking 
an entangled wavefunction between distant individual systems 
as reflecting something physically real would violate Einstein’s 
commitments.

The desire to deny spooky action- at- a- distance also has mo-
tivated some -credal approaches. In particular, the collapse 
of the wavefunction— the sudden global change in the form of 
the wavefunction as the result of an experimental observation— 
hardly seems very worrying if the wavefunction merely repre-
sents someone’s beliefs or information about a system rather than 
somehow representing the physical state of the system itself. To 
refer again to Bertlmann’s socks, if I know that Bertlmann al-
ways wears different colored socks and then see that his left sock 
is pink, my beliefs about his right sock suddenly change: I now 
know that it is not pink. But that change is no change at all in the 

what I am calling the quantum state. For our purposes, it suffices to remember 
that a wavefunction is a mathematical item— as “function” testifies— and the 
quantum state is whatever real physical feature of an individual system (if any) 
obtains iff the system is represented by a given wavefunction.
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physical state of the right sock! It was not- pink all along. I just 
didn’t know it.

Violations of Bell’s inequality, such as in the GHZ experiment, 
demonstrate that things can’t be so simple: The GHZ particles 
can’t be imbued with their dispositions to react to different local 
experimental arrangements all along, with the observer simply 
being ignorant about what these local dispositions are. And leav-
ing aside issues of locality and Bell’s inequality altogether, one 
might also wonder how any theory that is not -ontic could pos-
sibly account for interference phenomena, such as the Double- 
Slit experiment (Experiment 3). That experiment demonstrates 
that on every individual run, for every individual particle, some-
thing is physically sensitive to the state of both slits (i.e., whether 
each is open or closed). Because when both are open, there are 
regions of the screen where no flash can occur, even though one 
could occur there with only one slit open.

The surprising and somewhat unsettling thing about the wave-
function is how spread out it becomes. Mathematically, the wave-
function has nonzero values over large areas of the screen and 
along both paths through the interferometer. It would therefore 
come as a great relief to believe that the wavefunction only repre-
sents a collection of electrons that can “spread out” as each of the 
electrons goes its own separate way, or that the wavefunction only 
represents our information about where the electron is, which can 
become spread out as we lose track of where it might have gone. 
But neither such a spreading of a collection nor such a spreading 
of our ignorance can account for the interference effects. Interfer-
ence depends on the various parts of the wavefunction represent-
ing parts of something that really exists, which cancel one another 
out in each individual experiment. The cancellation exists irre-
spective of what other experiments might be done at other times 
and places and irrespective of what anyone knows or believes 
about the experiment. Interference is a real, observable, physical 
effect, and it requires a real physical cause. Such a cause must be-
have in a way that corresponds to how the wavefunction behaves. 
And any such physical item, whose behavior is reflected in that of 
the wavefunction, is just what we mean by a quantum state.
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Similarly, the elimination of the interference bands in Experi-
ment 4 is a real change in the sort of physical behavior displayed 
by individual systems. Regions of the screen that never display 
flashes with the proton absent sometimes do with the proton pres-
ent. The decisive circumstance is just whether the proton is there, 
not whether anyone knows or believes it is there. The presence of 
the phase- shifting magnets in the interferometer experiments al-
ters both the wavefunction and the observable behavior of every 
single electron, again regardless of whether anyone knows about 
the presence of the magnet. It is hard to see how any -credal 
approach can account for this phenomenon. And the difference 
between having the magnetic field present and having it absent 
does not merely change the collective statistics: Some individual 
outcomes always occur when it is there that never occur when it 
is absent. All the phenomena we have considered point forcefully 
to a -ontic theory.

Fortunately, a theorem by Matthew Pusey, Jonathan Barrett, 
and Terry Rudolph (2012) has made the case for -ontic theories 
even more airtight.

The Pbr Theorem

The logic of the Pusey, Barrett, and Rudolph’s (PBR) theorem is 
beautifully simple. Let’s take the example of a beam of electrons 
prepared to be z- spin up and a beam prepared to be x- spin up. 
The question is this: Is there something physically different about 
every single electron in the first beam compared with every sin-
gle electron in the second? According to a -statistical approach, 
this need not be the case. If the wavefunction represents only the 
overall statistical characteristics of each collection of electrons, 
then there could be individual electrons in the z- spin- up beam 
that are in exactly the same physical state as individual electrons 
in the x- spin- up beam. And then the very same electron could 
be attributed the state z- spin up when considered as part of one 
collective but also attributed the state x- spin up when considered 
as part of a different collective. Indeed, if this never happens— if 
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each individual electron can only be attributed one specific 
wavefunction— then nothing is left of the -statistical approach. 
And similarly, nothing is left of any -credal approach either: 
Each electron would have some unique associated wavefunction 
no matter what anyone knows or believes about it.

So the target question is as follows. Take two individual sys-
tems prepared so that they are attributed different wavefunctions. 
Could it nonetheless be the case that the two systems are in physi-
cally identical states? In our example, could an electron prepared 
to be z- spin up possibly be in the same physical state as one pre-
pared to be x- spin up? This is not to claim that every electron 
prepared in the first way would be in the same physical state as 
every electron prepared in the second, but just that sometimes 
an electron prepared in the first way is in the same physical state 
as an electron prepared in the second. Let’s call this hypothetical 
common physical state S.

The argument then proceeds as follows. If electrons produced 
by the z- spin- up preparation procedure are sometimes in S and 
electrons produced by the x- spin- up preparation procedure are 
sometimes in S, then it must occasionally be the case that a pair of 
electrons each prepared to be z- spin up are in reality both in the 
state S, and that a pair of electrons each prepared to be x- spin up 
are in reality both in the state S, and similarly if one is prepared 
z- spin up and the other x- spin up. In each of these cases, the pair 
of electrons ends up in the same physical state—both  S— even 
though the wavefunctions ascribed to the pair will be different: 
| z - >A | z - >B, | x - >A | x - >B, | z - >A | x - >B, and | x - >A | z - >B. If in real-
ity, the electrons are both in S in each case, the outcome of any 
further experiment cannot depend on which preparation was 
used. If an electron is really in state S after a preparation, then its 
subsequent behavior depends only on the fact that it is in S. How 
it happened to get that way becomes physically irrelevant.

Now comes the key observation. If a pair of electrons both in 
state S might have been prepared as | z - >A | z - >B, or as | x - >A | x - >B, 
or as | z - >A | x - >B, or as | x - >A | z - >B, and if the quantum recipe al-
ways makes good predictions, then the subsequent behavior of the 
pair must be consistent with each of the four possible preparations. 



The Wavefunction and the Quantum State

85

In particular, the pair cannot yield any outcome that is given zero 
probability by any of the four possible preparations. For if it did, 
and the pair happened in fact to be prepared in the “forbidden” 
way, then the quantum recipe would make a bad prediction.

The final step of the argument shows that there exists an ex-
perimental procedure on the pair of particles that, according to 
the quantum recipe, has exactly four possible outcomes and each 
outcome is inconsistent with one of the four possible prepared wave-
functions. That is, one outcome should (according to the recipe) 
be impossible if the pair has the wavefunction | z - >A | z - >B, an-
other impossible if it has the wavefunction | x - >A | x - >B, and so 
on. So in this circumstance, the pair of particles can’t behave in a 
way consistent with all four possible preparations. Whatever the 
system does, that behavior is ruled out by the quantum recipe, 
given one of the four possible preparations. Ergo it can’t be that 
sometimes an electron prepared to be z- spin up is in exactly the 
same state as one prepared to be x- spin up.

What is really important about the PBR argument is its logic, 
which we have sketched out. But it happens that we have devel-
oped enough of the quantum formalism to see exactly how the 
argument works in detail. It is good for your soul to follow at least 
a few of the actual calculations.

We already know what the four possible wavefunctions as-
signed to our pair of particles might be. What sort of experiment, 
with four possible outcomes, are we then to carry out? The es-
sential point is that each of the four possible outcomes has an 
associated eigenstate— a wavefunction guaranteed to give that 
outcome— but the eigenstates are all entangled states of the pair. 
These four entangled states are:

a: 
2

1  | z - >A | z . >B + 
2

1  | z . >A | z - >B

b: 
2

1  | z - >A | x . >B + 
2

1  | z . >A | x - >B

: 
2

1  | x - >A | z . >B + 
2

1  | x . >A | z - >B

: 
2

1  | x - >A | x . >B + 
2

1  | x . >A | x - >B.
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Each of these entangled states is associated with one of the 
four possible outcomes.

What we now want to show is that each of these outcomes is 
in turn inconsistent with one of the four possible preparations. 
To do this, we need to use the quantum recipe to predict, for 
each preparation, the probability for each of the four outcomes. 
So we need to express the preparation as a superposition of the 
four eigenstates listed above. Having done that, we can just read 
the probabilities for the outcomes off the state: The probability 
for each outcome is just the squared amplitude of the associated 
eigenstate.

Let’s do this for the possible preparation | z - >A | z - >B. Since 
this wavefunction is written in terms of z- spin, it is most con-
venient to rewrite all four entangled states in terms of z- spin as 
well. Just plug in the appropriate expression for x- spin in terms of 
z- spin and do some algebra:

b= 
2

1  | z - >A | x . >B + 
2

1  | z . >A | x - >B =

| | | | | |
2

1
2

1
2

1
2

1
2

1
2

1z > z > z > z > z > z >A B B A B B- - . . - .− + + =b bl l

2
1 | z - >A | z - >B - 2

1 | z - >A | z . >B + 2
1 | z . >A | z - >B +2

1 | z . >A | z . >B.

Similar manipulation yields

= 2
1 | z - >A | z - >B + 2

1 | z - >A | z . >B - 2
1 | z . >A | z - >B + 2

1 | z . >A | z . >B and

 = 
2

1  | z - >A | z - >B -  2
1  | z . >A | z . >B.

Finally, we can now express | z - >A | z - >B as a superposition of 
a, b, , and :

| z - >A | z - >B = 2
1 b + 2

1  + 
2

1  .

The quantum recipe therefore predicts (square the amplitude!) 
that if we do the experiment on a pair prepared with the wave-
function | z - >A | z - >B, there is a .25 chance of getting the outcome 
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associated with state b, a .25 chance of the outcome associated 
with state , a .5 chance of getting the outcome associated with 
state , and no chance at all of getting the outcome associated 
with state a.

Similar calculations reveal that | x - >A | x - >B cannot yield the 
outcome associated with , | z - >A | x - >B cannot yield the outcome 
associated with b, and | x - >A | z - >B cannot yield the outcome as-
sociated with . But now the idea that both the z- spin- up and 
the x- spin- up preparations could possibly yield the same physi-
cal state S is sunk. The pair of electrons both in the state S would 
have to react somehow to our experiment, but all four possible 
outcomes have been forbidden by the quantum recipe.

The argument just given does not refute -statistical or 
-credal theories in their full generality. All we have shown is that 
electrons prepared z- spin up and electrons prepared x- spin up 
cannot possibly be in the same physical state. But what we would 
need to show is that the same holds for any pair of preparations 
that, according to the quantum recipe, yield different wavefunc-
tions. One might even suspect that |z - > and |x - > preparations 
are quite likely candidates for yielding incompatible physical 
states since they are complementary: Maximal predictive cer-
tainty about z- spin implies minimal predictive certainty about 
x- spin, and vice versa. It is much more plausible that a prepa-
ration yielding |z - > and a preparation yielding a more nearby 
wavefunction, such as |30° - >, might create individual electrons 
in the same physical state.

Pusey, Barrett, and Rudolph prove that this is not so. To rule out 
the possibility for such nearby states, one has to go to more trouble 
than for |z - > and |x - >. For example, one might have to consider 
creating four electrons rather than just two, with each electron 
either prepared to be |z - > or |30° - >. Now there are 16 possible 
preparations (each electron could be prepared either way), and 
we consider an experiment with 16 possible outcomes and show 
that each outcome is inconsistent with one possible preparation. 
In this way, PBR show that preparations yielding different wave-
functions can never yield electrons in the very same physical state. 
Hence the wavefunction of an individual electron does reflect 
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some objective physical aspect of its physical state, and electrons 
ascribed different wavefunctions cannot be physically identical. 
The -statistical and -credal approaches to the wavefunction are 
incompatible with the predictions of the quantum recipe: Some 
-ontic approach must be correct. The wavefunction somehow 
represents a real physical aspect of individual systems.

Our quest to understand how the physical world may be, given 
the predictive success of the quantum recipe, has made real prog-
ress due to two theorems: Bell’s theorem and the PBR theorem. 
Bell teaches us that the predictions cannot be recovered by any 
local theory, that is, any theory according to which each of a pair 
of widely separated particles always has its own physical state that 
regulates its physical behavior (either deterministically or proba-
bilistically) independently of what happens to the other particle. 
PBR teaches us that we must take the mathematical wavefunction 
assigned to an individual system as reflective of some real aspect 
of the physical state of the system.

In the name of completeness, we must mention that both Bell’s 
theorem and the PBR theorem rely on one more premise, a prem-
ise so natural and universal that it is hard to imagine how to plau-
sibly deny it. That premise, which is sometimes called “statistical 
independence,” requires that there exist methods of “randomly” 
selecting either the setting of measurement apparatuses (Bell) or 
the particular prepared systems to experiment on from collec-
tions of prepared systems (PBR). The randomness entails that 
the selected groups will be not be correlated with the state of the 
incoming particles (Bell) or with the nature of the forthcoming 
experiment (PBR). Since the selection may be made however we 
like— flipping a coin, selecting on the basis of the parity of the dig-
its, and so forth— to deny this premise is to assert the existence of 
some deep- seated conspiracy that would undermine all of experi-
mental practice. (See the discussion in chapter 12 of Bell 2004).

Both the PBR and Bell theorems are “no- go” results: they tell 
us that certain approaches to understanding the physical world 
cannot succeed if the quantum recipe is accurate. But they both 
still leave quite a lot of room for articulating concrete theories. 
The nonlocality implied by the violation of Bell’s inequality must 
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be accounted for somehow. The wavefunction must represent 
some aspect of the real physical situation of individual systems. 
But there are alternative ways to implement the nonlocality and 
alternative accounts of the quantum state that the wavefunction 
represents. The detailed, concrete theories that we will examine 
illustrate some of these possibilities.

whaT is The quanTum sTaTe afTer all?

Having established that the wavefunction of an individual system 
does represent some real physical aspect or feature of the system, 
we are naturally led to ask what sort of aspect that might be. If by 
stipulation we call this aspect the “quantum state of the system,” 
our question then becomes: What is a quantum state?

It is not immediately clear what sort of question is being asked 
here. What information are we seeking? What characterizations 
of the quantum state might we expect to be enlightening?

One way of pursuing this question leads to a dead end. In a 
philosophical setting, one can be tempted to ask: to what category 
of being should the quantum state be assigned? The notion that 
all existing entities belong in one category or other goes back at 
least to Aristotle, who provided a canonical set of categories: sub-
stance, quantity, quality, relations, actions, passions, and the like.5 
Asking what a quantum state is, then, is asking to pigeonhole it in 
one or another of a set of pre- established ontological boxes.

I can see no virtue in this method of pursuing the question. 
Why think that Aristotle, or any other philosopher or scientist 
who never considered quantum theory, had developed the right 
conceptual categories for characterizing everything physically 
real? The quantum state is a novel feature of reality on any view, 
and there is nothing wrong with allowing it a novel category: 
quantum state. This is, of course, not an informative thing to say, 
but it does free us from the misguided desire to liken the quan-
tum state to anything we are already familiar with.

5 Aristotle Categories 1b25– 2a4.
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What sort of substantive questions about the nature of the quan-
tum state can we ask, if the question of its ontological category is 
uninteresting? There are lots of detailed questions available. The 
main ones concern the relation between the wavefunction— the 
mathematical item used in the quantum recipe— and the quan-
tum state. For example: Which mathematical degrees of freedom 
in the wavefunction correspond to physical degrees of freedom 
in the quantum state, and which do not? We have already noted 
that multiplying a wavefunction by an arbitrary overall phase 
does not change any predictions produced by the quantum rec-
ipe. This suggests that there is no physical degree of freedom in 
the quantum state that corresponds to the overall phase of the 
wavefunction.

We can ask whether there are many distinct fundamental 
quantum states pertaining to the physical universe or only one. 
The entanglement of the wavefunction plays an important role 
in addressing this question. When the wavefunction of two sys-
tems is entangled, it cannot be represented mathematically as the 
product of separate wavefunctions for each system. In this sense, 
neither subsystem individually has its own wavefunction, but 
only the joint system does. Following this line of thought and tak-
ing account of the ubiquitous interactions that result in entangle-
ment, one might conclude that only the entire physical universe 
as a whole has a wavefunction, and hence a quantum state.

Or was that argument too quick? It is true that when the 
wavefunction of two systems is entangled, it can’t be expressed 
as the product of separate wavefunctions for each subsystem. But 
a different mathematical object, called a density matrix, can be 
assigned to each subsystem. The density matrix can be used in a 
slightly modified version of the quantum recipe to derive empiri-
cal predictions for the subsystem.

Take, for example, a pair of electrons whose assigned wave-
function is the singlet state. Suppose that we wish to make pre-
dictions only concerning experiments carried out on one of the 
electrons. Can the quantum recipe be adjusted to assign some 
mathematical object to that electron alone and use it to generate 
the predictions?
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We can’t assign any spinor to our electron. Every single- 
particle spinor is an eigenstate for spin in some direction— that is, 
it predicts with certainty how the electron will behave if a Stern- 
Gerlach magnet is oriented in that direction. But in the singlet 
state, no prediction with certainty can be made in any direction: 
For all possible directions, the quantum recipe assigns even odds 
to how an experiment will come out. But the slightly different sort 
of mathematical object known as a density matrix can be used to 
generate just this prediction.

A density matrix is in many ways similar to a weighted col-
lection of wavefunctions. Suppose, for example, we have a source 
that produces z- spin- up electrons half the time and z- spin- down 
electrons half the time. If all we know about a particular elec-
tron is that it comes from that source, we can make predictions by 
equally weighting by .5 what the recipe predicts for z- spin up and 
for z- spin down. This obviously leads to a 50- 50 prediction about 
the result of a z- spin experiment and also obviously 50- 50 for an 
x- spin experiment (because each eigenstate of z- spin yields that 
prediction). And not so obviously, it also leads to the same 50- 50 
prediction for a Stern- Gerlach magnet oriented in any direction.

A density matrix is not exactly the same as a weighted col-
lection of wavefunctions, since different weighted sums yield the 
same density matrix. For example, an equally weighted sum of 
x- spin up and x- spin down yields all the same predictions as the 
equally weighted sum of z- spin up and z- spin down, and hence 
corresponds to the same density matrix. So even though we can-
not assign a wavefunction to each individual electron in a singlet 
state, we can assign to each a density matrix. Can we then regard 
the wavefunction assigned to the joint system as somehow deriv-
ing from the density matrices assigned to the parts?

We cannot. The problem is that the pair of density matrices 
fails to contain any information about correlations between ex-
periments done on the two systems. In a singlet state, for ex-
ample, we not only predict a 50% chance of an up outcome to a 
z- spin experiment done on each electron, we also predict a 0% 
chance that both results will be up or both down. Our ability to 
predict the strict anticorrelation between results (even though we 
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can’t predict the individual results) is exactly what led to the EPR 
argument for the incompleteness of the wavefunction as a repre-
sentation of the physical state of the particles.

Here’s another way to see this point. The singlet state has the 
form 2

1  | z - >A | z . >B -  2
1  | z . >A | z - >B. There is a similar- looking 

state called the m = 0 triplet state whose form is 2
1  | z - >A | z . >B + 

2
1  | z . >A | z - >B (this is exactly the state a mentioned in the previous 
section). The density matrix assigned to each electron in the singlet 
state is identical to the density matrix assigned to that electron in 
the m = 0 triplet state. But the two wavefunctions yield different 
predictions for the pair of electrons. In particular, when x- spin ex-
periments are done on both electrons, the singlet state predicts they 
will certainly have different outcomes, and the m = 0 triplet state 
predicts they will both have the same outcome. (You can check! 
Homework problem!) So the density matrices assigned to the parts 
do not determine the wavefunction assigned to the whole. There is 
more information in the global wavefunction than in the collection 
of mathematical objects assigned to its subsystems.

In the context of the quantum recipe, the mathematics of the 
wavefunction suggests that the quantum state (whatever it is) is a 
fundamentally global sort of thing. The quantum state of a system 
is more— in a very concrete sense— than any collection of states 
that can be ascribed to its individual parts. Pursuing this line of 
thought in the obvious way, conjoining all the parts of the uni-
verse into a single system, suggests that ultimately there is only 
one fundamental quantum state: the quantum state of the entire 
universe. This somehow influences the behavior of all the parts of 
the universe, but (unlike in the old mechanical picture of the uni-
verse) the global behavior cannot be accounted for as just the sum 
of interactions among the individually specifiable parts. Insofar 
as we can attribute wavefunctions to individual proper subsys-
tems of the universe, we have the right to wonder why and how 
they inherit their wavefunctions from the universal one.

This observation leads to another puzzle. If the only funda-
mental quantum state is the quantum state of the entire universe, 
how does quantum physics manage to succeed as a practical 
method for making predictions? After all, no one ever has known 
or written down or calculated with a wavefunction for the entire 
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universe! And if the only fundamental quantum state is the quan-
tum state of the entire universe, how can we get any clues from 
the quantum recipe about how it behaves? For example, we would 
like to know whether the quantum state of the universe changes 
with time or is static. But if we cannot be sure about what the 
wavefunction of the universe is, how can we even begin to guess 
how it might change with time?

In sum, there are many interesting questions to ask about the 
quantum state that avoid entirely the question of what “category 
of being” it falls in. We can ask fundamentally how many quan-
tum states there are. We can ask which mathematical features of 
a wavefunction correspond to physical features of the quantum 
state. We can ask why the wavefunction has the mathematical 
form it does. We can ask what physical role the quantum state 
plays in producing observable behavior. We can ask whether— 
and how— the fundamental quantum state changes with time.

Different theories answer these questions different ways. Some 
answer them more clearly and straightforwardly than others. One 
touchstone to use in assessing the conceptual clarity of a pro-
posed physical theory is how it addresses these sorts of questions. 
Indeed, we will use claims about the behavior of the quantum 
state as the first characteristic that separates different exact quan-
tum theories from one another. This detailed investigation begins 
in the next chapter.

Problem
1) Verify that the m = 0 triplet state has the property 

claimed above, that is, that it predicts perfect correla-
tion rather than perfect anticorrelation when x- spin 
experiments are done on both sides. This is just a mat-
ter of replacing the z- spin eigenstates with their equiv-
alents written in terms of x- spin eigenstates.

furTher reading

Various analyses of the status of the quantum state can be found 
in the book edited by Alyssa Ney and David Albert (2013).
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CHAPTER 4

Collapse Theories and the  
Problem of Local Beables

we are now  in a position to begin our main project: discussion 
of precisely articulated physical theories that can account for the 
predictive accuracy of the quantum recipe. We want to set a high 
standard for ontological and dynamical precision and clarity. It 
should be clear exactly what each theory postulates to exist and 
clear exactly how that ontology is postulated to behave. In par-
ticular, the account of the behavior of things, the dynamics of the 
theory, should be presented in the form of equations. These might 
be deterministic equations, so that an initial state of a system can 
evolve in only one way, or equations for a stochastic process, 
where the same initial state can evolve in various different ways. 
In the latter case, the dynamical law should specify both which 
evolutions might take place and what the chances are for each of 
the possibilities.

The obvious place to begin the search for such precise physical 
theories is with the quantum recipe itself. The recipe associates a 
mathematical wavefunction with systems, provides an exact equa-
tion (Schrödinger’s equation) for how that wavefunction evolves at 
least some of the time, and offers a (vaguely specified) set of direc-
tions for extracting probabilistic predictions from it. The PBR theo-
rem has assured us that the wavefunction reflects something about 
the real physical state of the individual system. So one natural thing 
to do is to postulate a real physical item— the quantum state— that 
is represented by the wavefunction and then try to specify its dy-
namics in a way that directly mimics the quantum recipe.

The main difficulty for such an approach lies in the third part 
of the recipe: the invocation of Born’s Rule. Born’s Rule is unex-
pected, puzzling, and problematic for several reasons.
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One reason is that nothing in the recipe until that point sug-
gests anything probabilistic. Wavefunctions are assigned to sys-
tems— at least in certain experimental situations— in a regimented 
way. We have no choice, for example, about which wavefunction 
to assign to an electron in a cathode ray tube of specified design 
and voltage. All the electrons get assigned the same wavefunction. 
That wavefunction in turn evolves deterministically according 
to Schrödinger’s equation. In a sense (treating the single- particle 
wavefunction as a field on physical space), it spreads out, interacts 
with both slits, develops interference bands, and so forth. There 
is nothing inherently probabilistic in this, as the parallel case of 
water waves illustrates. It is only at the last step of the recipe that 
probabilistic notions appear. All of a sudden, without warning, the 
squared amplitude of the wavefunction is regarded as a probabil-
ity, and what it is a probability for is a localized sort of event: a 
flash or mark appearing at one location on the screen rather than 
another. The wavefunction, which was being used to represent the 
electron, becomes progressively more spread out in space. But the 
phenomenon associated with Born’s Rule is not spread out: It is 
highly localized. So both the sudden injection of probability into 
the theory and the sharp localization of the phenomenon have to 
be accounted for by the physical theory.

Born’s Rule is problematic for a third reason: It does not pre-
cisely specify in exactly which physical circumstances it applies. 
Nor does it precisely specify exactly what wavefunction should 
be associated with a system after one uses it. The recipe, as pre-
sented, does not address this issue. A proper physical theory 
should do better.

Certain words are used when explicating Born’s Rule: “Use it 
when a measurement is made.” In the form we have appealed to, 
one would say: “Use it when a position measurement is made on 
the system and use the squared amplitude to assign various prob-
abilities to the outcome of the measurement.” But these words do 
not provide a precise physical characterization of anything. We 
have the rough- and- ready idea that the interaction with the phos-
phorescent screen in our experiment should be regarded as a po-
sition “measurement,” so Born’s rule should be applied then and 
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not earlier. But this rough- and- ready sense has not been given 
any foundation in clear physical language.

Most standard textbook presentations do not confine the use 
of Born’s Rule to position “measurements.” They invoke the rule 
for “measurements” of many different observables: momentum, 
angular momentum, z- spin, and the like. Each observable prop-
erty is associated with a Hermitian operator, and when a measure-
ment of the property occurs, the wavefunction collapses into an 
eigenstate of that operator. But since experimental arrangements 
do not come with signs saying what they are “measurements” of, 
this makes the situation even more dire. Without a determination 
of when a “measurement” occurs and of what is being measured, 
one knows neither when to apply to Born’s Rule nor how to apply 
it. Nor does one know what the wavefunction after the applica-
tion should be.

Here I have consistently put scare quotes around the word 
“measurement,” because in everyday life, the term carries con-
notations that could easily be physically misleading. Not every 
experiment is a measurement in the everyday sense. Here is a 
specification of an experimental procedure: Take a US quarter, 
and using your thumb, flip it so it travels at least 3 feet in the 
vertical direction and rotates at least six times in the air, let it land 
on a hard, flat, wooden floor, and record whether it lands heads 
up or tails up. This is a well- defined (enough) experimental pro-
cedure, but it is not, in any interesting sense, the measurement of 
anything. In particular, it is not the measurement of any property 
of the coin.

If the procedure is repeated many times, then one can say that 
the net result measures the bias of the coin. If after 10,000 repeti-
tions, the coin has landed heads 70% of the time, we would con-
fidently conclude that the coin is not fair (ignoring the possibility 
that the flipper had preternatural control of the flipping process). 
The bias of the coin is therefore regarded as a measurable physi-
cal feature of it. The normal notion of “measurement” has exactly 
this form: A measurement is not just any old physical interaction 
with a system, but an interaction so designed as to yield informa-
tion about features the system had antecedently to the interaction. 
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When I judge that I measure my weight by stepping on a scale, I 
presume that I had a weight before stepping on the scale, and fur-
ther that the behavior of the scale is correlated with that preexist-
ing weight. If either of these conditions fails, then the interaction, 
whatever it may be, is not a measurement of my weight.

To call the physical interaction between the electron and the 
screen that produces the mark a “position measurement” there-
fore suggests that 1) the electron had a position antecedent to the 
interaction, and 2) the location of the mark is a reliable indicator 
of that position. This is exactly the sort of claim that will be either 
vindicated or refuted by the complete physical account of the in-
teraction provided by a clearly articulated physics. But it is not 
the sort of thing that can just be read off from the phenomena or 
the data. We know by observation that a mark was created. We do 
not know by observation whether it corresponds to an anteced-
ently existing position of the electron.

Quantum mechanics is often said to have a conceptual prob-
lem called the “measurement problem.” Various things have been 
meant by this statement. In one formulation, it is the demand 
that a properly formulated quantum theory account for the fact 
that measurements have outcomes, a standard example being the 
case of Schrödinger’s cat. Schrödinger imagined a cat imprisoned 
in a device with a radioactive source coupled to machinery that 
will release poison if a Geiger detector clicks. If the radioactive 
source is weak enough, after an hour, the wavefunction of the sys-
tem (calculated using Schrödinger’s equation) will have become 
wildly spread out in the configuration space of the system. The 
wavefunction will be a superposition of many states correspond-
ing to the Geiger counter having gone off at different times and so 
killing the cat, and a state in which it never went off and the cat 
is fine. But although the wavefunction is agnostic about the fate 
of the cat, the cat itself (we think!) simply ends up either alive or 
dead. Born’s Rule can be used to calculate a probability for each 
outcome, but it does not specify how or when the fate of the cat 
was decided.

In this formulation, the measurement problem has nothing to 
do with measurements per se. It is rather the problem of physically 
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explaining how experiments come to have the sorts of outcomes 
we take them to have. Whether the experiments are “measure-
ments” is immaterial. In fact, it is not clear that Schrödinger’s ex-
perimental arrangement measures anything— the point is that it 
is an arrangement that either kills the cat or doesn’t. Similarly, our 
coin- flip experiment is not a measurement, but we think it has a 
unique outcome: heads or tails.

Our present complaint is different. We have been trying to use 
the quantum recipe as a guide to the construction of a precise 
physical theory, but the recipe employs Born’s Rule, which is itself 
explicated in terms of “measurements” of “observables,” such as 
position. At the moment, we have no idea how to translate these 
terms into plain physical language. Which physical characteris-
tics of an experiment determine whether it is a situation in which 
Born’s Rule ought to be invoked, and, if so, which “property” has 
been “observed”? We seem to be confronted with the monumen-
tal task of explicating the concept of observation in precise physi-
cal terms.

So it is a nontrivial task to formulate a precise physical the-
ory that explains the success of the quantum recipe and also 
uses the recipe itself as a model. The problems mostly arise re-
covering Born’s Rule. The rule tells one to introduce probabilis-
tic terminology into the description, but it does not give precise 
conditions when this should be done. And the rule, in a case like 
our phosphorescent screen, tells us to expect outcomes that are 
sharply localized in space, even though the wavefunction— the 
only mathematical representation we have of our system— has no 
such corresponding localization. Still, one can take the bull by the 
horns and try to solve these problems.

collaPse Theories

Various distinct physical theories can validate the quantum 
recipe. It is useful to divide these theories into generic types, 
illustrating each type with a concrete example. Our first type 
is collapse or reduction theories. The hallmarks of a collapse 
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theory are 1) it postulates a fundamental physical quantum state 
that does not always obey a deterministic linear law of motion 
(such as would be represented by a wavefunction that satisfies 
Schrödinger’s equation), but instead at least sometimes obeys 
an indeterministic and nonlinear law, and 2) this fundamental 
quantum state is informationally complete, that is, any two sys-
tems that have exactly the same quantum state are physically 
alike in all respects. In Einstein’s terminology, according to a col-
lapse theory, God does play dice, and the quantum- mechanical 
description of a system is complete. (Since these are exactly the 
characteristics Einstein attributes to “present quantum theory,” 
we can infer that he regarded the prevalent understanding of 
quantum theory to be a collapse theory.) We assume here that 
the wavefunction of a system specifies a unique quantum state 
for the system. This is consistent with the wavefunction hav-
ing mathematical degrees of freedom that do not correspond to 
physical degrees of freedom in the quantum state (i.e., different 
wavefunctions might specify the same quantum state).1 But so 
long as each wavefunction is consistent with only one quantum 
state, the wavefunction will also be informationally complete. 
That is, it is possible in principle to extract every physical fact 
about a system from its wavefunction.

This general characterization of a collapse theory leaves two 
places for specific details to be filled in: 1) what the exact dynam-
ics for the quantum state is and 2) how the quantum state de-
termines all physical facts (including the observable outcomes of 
experiments). Theories that answer either of these questions dif-
ferently are different physical theories. Initially, most of the work 
on collapse theories was directed at the first question, and various 
alternative answers were developed. After a while, it became clear 
that the second question is equally important and must be ad-
dressed. Let’s start with the first.

In the standard textbook account, the dynamics of the wave-
function has a dual character: smooth deterministic linear 

1 To take the obvious example, two wavefunctions that differ by an overall 
complex phase are standardly taken to represent the same quantum state.
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Schrödinger evolution “when no measurement occurs,” and ran-
dom probabilistic collapse to an eigenstate of the measurement 
set- up “when a measurement does occur.” But without a clear 
physical characterization of what a measurement is, or what 
property is being measured, this is of no use. The most promi-
nent collapse theory to completely avoid this difficulty was pro-
posed by GianCarlo Ghirardi, Alberto Rimini, and Tulio Weber 
(1986) and is known as the GRW theory. If one had been steeped 
in the standard approach, one might have thought that the GRW 
theory must offer an exact physical account of measurement as 
the physical trigger of collapse. But just the opposite is true: GRW 
is physically precise exactly because it completely ignores the no-
tion of measurement. Collapses of the quantum state occur in this 
theory, but when and how they occur has nothing at all to do with 
what (if any) measurements happen to be taking place. The GRW 
collapses occur in a uniform way at randomly occurring times 
with a fixed probability per unit time for each particle in the uni-
verse. Since measurement is nowhere invoked in this dynamic, 
there is no need for a physical analysis of what a measurement 
is. The GRW theory cuts the Gordian knot of the measurement 
problem.

Because there is no environmental trigger for the collapse, 
GRW is called a spontaneous collapse theory.

Suppose, for example, we prepare a single electron to have an 
initial wavefunction that is an equal superposition of an electron 
traveling to the right and an electron traveling to the left. If we 
just shoot an electron off to the left, it would have a fairly precise 
momentum to the left and we would attribute to it a wavefunction 
|left>. This wavefunction has a lump in it, which (by Born’s Rule) 
shows where a flash would likely occur on a screen if one were set 
up. This lump, by Schrödinger evolution, moves ever farther off 
to the left. Figure 18a depicts such a wavepacket. The packet has a 
fairly well- defined position, given by the bell- curve envelope, and 
also a fairly well- defined momentum, given by the wavelength of 
the curve inside the envelope. Neither the position nor the mo-
mentum is perfectly well defined (i.e., the wavefunction is not 
an eigenstate of either), because by the Heisenberg uncertainty 
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relations, if one is perfectly well defined then the other is com-
pletely unpredictable. Similarly, if we shoot an electron off to the 
right, we would attribute to it a wavefunction | right>, which is 
just the mirror image of | left>. Its lump moves ever farther to the 
right with little dispersion (Figure 18b). But then, by the super-
position principle, there must exist an initial wavefunction that 
is 2

1  | left> + 2
1  | right>. So long as the dynamics of the wavefunc-

tion is given by Schrödinger’s equation, this wavefunction must 
evolve with two equal- sized lumps moving off in opposite direc-
tions, getting farther and farther apart (Figure 18c). The perfect 
symmetry between the two sides will never change.

Since a spontaneous collapse theory (by our definition) is 
committed to the informational completeness of the quantum 
state, and hence the informational completeness of the wavefunc-
tion, this is already a somewhat curious situation. Where, we 
might ask, is the electron in this scenario? If the wavefunction is 
complete, then the electron is no more on the one side than on 
the other. One might be inclined to say that it is “smeared out” 
between the two locations in space, or that it is somehow in both 
locations, or even that it is really in neither location, but what one 
cannot possibly say is that such an electron is really on the right 
and not on the left.

Born’s Rule tells us what to expect if we happen to put phos-
phorescent screens at some great distance on each side: there is 
a 50% chance of a flash occurring on the right, a 50% chance of 
a flash occurring on the left, a 0% chance of flashes occurring 
on both sides, and a 0% chance of no flash occurring on either 
side. But in this theoretical context, such an experiment cannot 

Figure 18
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be regarded as a “measurement” in the intuitive sense, because 
the electron is not actually on the right rather than the left before 
the interaction with the screen, nor is it actually on the left rather 
than the right. So the flash cannot be interpreted as revealing a 
preexistent fact about the electron. In the proper sense of “mea-
surement,” this experiment is no more a measurement of any 
property of the electron than flipping a coin is a measurement of 
a feature of the coin. But Born’s Rule, as a practical matter, does 
not require that any experiment actually be a measurement in this 
proper sense, merely that we would be inclined to call it a mea-
surement, given a background in classical physics.

The important point is that whatever one might mean by “mea-
surement,” if the electron in our experiment just propagates in 
empty space, if no phosphorescent screen or other device is ever 
introduced into the situation, then no measurement of any sort can 
be considered to occur. Therefore, in any theory that associates the 
collapse of the wavefunction with “measurements,” no collapse will 
ever occur: the wavefunction will always evolve linearly and sym-
metrically on both sides. But in the GRW theory, even if the elec-
tron is propagating in a vacuum, a collapse always has some chance 
of occurring, and if we wait long enough (a very long time, as we 
will see!) a collapse is essentially certain to occur. That collapse will 
break the symmetry of the wavefunction and will result in the par-
ticle being localized on one side of the experiment or the other.

How likely is such a collapse to occur according to the theory? 
This is determined by a new constant of nature, whose value can 
be set within a fairly wide range while recovering the verified pre-
dictive accuracy of the quantum recipe. In the original version 
of the theory, a single electron or proton would experience a col-
lapse, on average, once every 1015 seconds, or about once every 
108 years.2 So in this picture, starting out in the state 2

1  | left> + 
2

1  | right> and evolving in empty space, the theory implies a tiny 
chance— about 1 in 1,000,000,000,000,000— that the quantum 

2 In some versions of the theory, the collapse rate depends on the mass of the 
particle and so would be different for electrons and protons. We ignore those 
subtleties here.
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state of the system will collapse in any given second. So much for 
the timing of the collapse.

How does the wavefunction— and hence the quantum 
state— of the electron change if a collapse happens to occur? In 
the textbook account, this would depend on an analysis of the 
sort of measurement taking place, with the collapse resulting in a 
new wavefunction that is an eigenstate for that sort of measure-
ment. Since the GRW collapses are completely detached from 
measurements, the answer must have an entirely different form.

In our discussion of the quantum recipe, we noted the incon-
gruity that in many of our experiments the wavefunction tends to 
spread out and interfere over large areas, but the observed phe-
nomena (flashes or marks) whose probabilities are provided by 
Born’s Rule are relatively localized. Indeed, it is exactly because 
of this localization in the phenomena that one is inclined to re-
gard interaction with the screen as providing a position measure-
ment rather than, for example, a momentum measurement. The 
collapses of the quantum state in the GRW theory respect this 
idea, namely, that the collapse dynamics should counteract the 
tendency of the quantum state to spread out in space through 
Schrödinger evolution, having the opposite effect of making it 
bunch up. But just how bunched?

If one tries to model the collapse as the outcome of a position 
measurement, as it would be treated in the textbook approach, then 
the post- collapse state would have to be an eigenstate of the “posi-
tion operator,” that is, a wavefunction that yields a prediction with 
certainty about exactly where in space the particle will be found. 
But the only sort of state with the requisite predictive character is 
one in which the entire weight of the wavefunction is concentrated 
at a single point, with zero amplitude elsewhere. Properly speaking, 
there are no wavefunctions with this character (if a function is zero 
everywhere but at a single point, then its integral over any mea-
sureable set is also zero, and so it can’t be normalized), but there is 
a fancier mathematical object called a Dirac delta function that has 
the required mathematical features. So perhaps after a collapse, the 
wavefunction should be such a delta function, reflecting the idea 
that the particle has become perfectly localized.
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This idea fails on empirical grounds. We have seen how the 
Schrödinger equation works: The more rapidly the slope of the 
wavefunction varies in space in some direction, the faster (in time) 
the wavefunction spreads out in that direction. The slope of the 
delta function varies, as it were, infinitely quickly: It goes from 
being slope zero (horizontal) to an infinite slope (vertical) at a sin-
gle point. So it would also spread infinitely fast. And this perfect 
localization would inject an enormous amount of energy into the 
system. If an electron in an atom were ever to suddenly have any-
thing close to a delta function for a wavefunction, it would there-
after (according to the Schrödinger equation) be ionized and shot 
out of the atom with tremendous energy. We know that this is not 
happening, because we see no such high- energy electrons and do 
not notice any spontaneous increase of energy in physical systems.

The post- collapse localization of a particle, then, must not be 
such an extreme affair. In the GRW theory, the effect of a col-
lapse is mathematically modeled by multiplying the wavefunc-
tion of the particle by a Gaussian— a bell curve— whose exact 
shape is described by another new constant of nature. To avoid 
the anomalous ionization problem, the Gaussian should not lo-
calize a particle into a volume smaller than an atom. In the origi-
nal theory, the width of the Gaussian was taken to be 10−5 cm, or 
about 200 times the size of a hydrogen atom. (Once multiplied by 
the Gaussian, the wavefunction is renormalized.)

Having specified when collapses occur in the GRW theory— 
randomly, about once in 100,000,000 years for each particle— and 
what mathematical effect the collapse has on the wavefunction— 
multiplication by a Gaussian of width 10−5 cm— the theory still 
needs to specify where in space the Gaussian should be centered. 
A rough, but not quite mathematically accurate, prescription is 
that the probability density that the Gaussian be centered at a par-
ticular point in space is proportional to the squared amplitude 
of the pre- collapse wavefunction of the particle at that point.3 

3 What is mathematically accurate? The probability density that the Gaussian 
is centered at a point is not the absolute square of the pre- collapse wavefunction 
at that point, it is the convolution of the absolute square of the Gaussian with the 
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This connects the prescription for the probabilities for different 
locations of collapse directly to Born’s Rule as applied to position 
measurements.

These precise mathematical prescriptions for the evolution 
of the wavefunction specify how the quantum state in the GRW 
theory behaves. The imprecise notion of “measurement” never 
occurs in the formulation of the theory. As far as the quantum 
state goes, everything else is just analysis.

Let’s consider two examples of the effect of such a spontaneous 
collapse on the wavefunction of an electron. Figure 19a shows the 
wavefunction of an electron in an atomic orbital and the Gauss-
ian that the wavefunction would be multiplied by if a collapse 
should occur. Since the collapse is only likely to occur where the 
squared amplitude is high, and the amplitude of the wavefunction 
at 100 times the atomic radius from the atom is essentially zero, 
the Gaussian will be centered somewhere over the atom. And 
since the width of the Gaussian is so much larger than that of the 
atom, the value of the Gaussian in the region over the atom is al-
most constant. So the waverfunction after the multiplication and 
renormalization will be almost exactly the same as before (Figure 
19b). For all practical purposes, the wavefunction will continue to 
evolve in accord with Schrödinger’s equation even if the electron 
happens to suffer a GRW collapse or “hit.”

But the situation with our superposition 2
1  | right> + 2

1  | left> is 
quite different once the two lumps in the wavefunction have sepa-
rated by even 1/100 cm. As Figure 20a shows, once the separation 

absolute square of the pre- collapse wavefunction at that point. Aren’t you glad we 
are skipping over these details?
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between the lumps is much greater than the width of the Gauss-
ian, a hit will almost certainly be centered either over the right 
lump or over the left lump. Since the amplitude of the Gaussian 
rapidly approaches zero as it gets more than 10−5 cm from the cen-
ter, the multiplication will reduce one lump to almost zero. The 
wavefunction goes from being symmetrically balanced between 
the two sides to being wildly unbalanced on one side or the other 
(Figure 20b). Either almost all the squared amplitude ends up 
on the right or almost all of it ends up on the left, depending on 
where the collapse is centered. And the equations imply that, in 
this case, there is a 50% chance of either outcome.

So under some circumstances, the GRW collapse has little ef-
fect on the wavefunction and in other circumstances, it makes 
a dramatic change. Still, one might wonder, what practical dif-
ference could any of this make? If each particle only suffers a 
collapse once in 100,000,000 years, how could that have any no-
ticeable effect on the time scale of a laboratory experiment?

The key to answering this puzzle is entanglement. Consider 
an EPR set- up with a pair of electrons starting in the singlet state 
and both magnets oriented in the z- direction. Pure Schrödinger 
evolution yields the state

2
1  | z - >R | upward>R |  z . >L | downward>L 

- 
2

1  | z . >R | downward>R | z - >L | upward>L.

For the “up” and “down” outcomes of the experiment to be 
distinguishable, there must be much more than 10−5 cm difference 

Figure 20
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between where the upward and downward beams would hit a 
screen. So if a GRW collapse occurs on particle L, it will either 
accumulate almost all of the squared amplitude of the wave-
function in the |upward>L branch of the wavefunction or in the 
|downward>L branch, with equal chance of each outcome. But 
because of the entanglement in the wavefunction, such a GRW 
hit on particle L will also concentrate almost all the squared am-
plitude for particle R in the opposite branch to L. When particles 
are strongly entangled in the way they are in the wavefunction 
above, a collapse on either particle equally localizes both (Figure 
21a, 21b). So the chance of both particles being localized in a given 
period of time is twice the chance of either individually suffering 
a collapse.

It is useful to compare the entangled state above with the prod-
uct state
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In the product state, the amplitudes of both R and L are equally 
divided between the upward and downward paths, so the chance 
of a flash occurring in each location, should a screen be intro-
duced, is 50%. But as Figures 22a and Figure 22b illustrate, a col-
lapse on one particle no longer has any effect on the wavefunction 
of the other. And if screens are introduced on both sides, there is 
no predicted correlation between the results. In 25% of the cases, 
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both flashes will be up, in 25% both down, in 25% R up and L 
down, and in 25% R down and L up. Unlike the singlet case, the 
location of the flash on one side provides no new information 
about where the flash on the other side might occur. In the prod-
uct state, the localization of one particle does nothing to localize 
any others.

This effect scales with the number of particles entangled. When 
physical processes entangle all particles in a macroscopic object, 
the net effect becomes very significant. Suppose, for example, we 
start with a single | x - > electron and pass it though a z- oriented 
magnet followed by a florescent screen. Next we add a light de-
tector at the upper part of the screen, coupled to Schrödinger’s 
infernal device that breaks a flask of poison if a flash is detected. 
Since a flash would result in the cat dying and no flash would 
result in the cat living, pure linear Schrödinger evolution of the 
wavefunction yields

2
1  | z - > | upward> | dead cat> - 

2
1  | z . > | downward> | live cat>.

The original electron is now entangled with every particle in 
the cat and, importantly, all particles in the cat are entangled with 
one another. This entanglement would also spread to the air mol-
ecules in the enclosure, since they would have different trajecto-
ries if the cat were breathing than if it were not. Quite plausibly, 
the spatial part of the wavefunction for every single particle in 
the apparatus differs by at least 10−5 cm. between the “dead cat” 
branch and the “live cat” branch of the wavefunction. So a GRW 
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collapse on any one of these particles will have the effect of local-
izing all of them to one branch or the other.

And this, at last, is a result we can solve problems with. If we had 
to wait for a particular particle to suffer a GRW collapse in order 
for the wavefunction evolution to differ from pure Schrödinger 
evolution, then the GRW modification of the dynamics would 
make no difference over the time scales of actual experiments. 
But since there are more than 1027 particles in cat, a state like the 
one above could not survive the GRW dynamics for even a micro-
second. Some particle will suffer a collapse in about 10−11 seconds, 
effectively eliminating one or the other branch of the wavefunction. 
Schrödinger’s cat cannot remain in a state of indefinite health.

In short, the GRW dynamics, which is fully specified by pre-
cise equations of motion without any mention of “measurement,” 
makes effectively no difference for the wavefunctions of single 
particles or small collections of particles on the time scale of cen-
turies. Their wavefunctions will almost certainly obey pure linear 
evolution, thereby becoming delocalized. Their wavefunctions 
will interact with both slits in the Double Slit experiment and will 
travel both branches of an interferometer. But macroscopic solid 
objects, containing many particles bound to one another, cannot 
have wavefunctions that become delocalized in this way. A GRW 
collapse will almost instantaneously localize the wavefunction of 
each particle to a region of about 10−5 cm.

How does this new dynamics of the wavefunction help us un-
derstand the success of the quantum recipe? Granting one critical 
hypothesis, it is easy to finish the argument. The quantum state 
corresponding to

2
1  | z - > | upward> | dead cat> - 

2
1  | z . > | downward> | live cat>

is not, in this theoretical setting, one in which there is either a 
dead cat (and no live cat) or a live cat (and no dead cat). For we 
are assuming that the wavefunction is informationally complete, 
and the symmetry of the wavefunction ensures that it cannot rep-
resent the cat as being in one state rather than the other. But after 
a GRW collapse, the state will essentially be either
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(1 - )1/2 | z - > | upward> | dead cat> -

()1/2 | z . > | downward> | live cat>

or

()1/2 | z - > | upward> | dead cat> -

(1 - )1/2 | z . > | downward> | live cat>

with  extraordinarily close to zero. ( never becomes zero, because 
the Gaussian never becomes zero, so neither branch is completely 
eliminated in a collapse. Whether this presents a problem should 
not be immediately clear.) The dynamics gives an equal chance to 
each outcome. So if we are justified in saying that the first state 
corresponds to the cat ending up dead (and not alive) and the sec-
ond corresponds to the cat ending up alive (and not dead), then 
we will have vindicated the quantum recipe in this case.

In the same way, the GRW collapse dynamics will yield the 
same predictions as the quantum recipe, within observational 
error, for every experiment that has ever actually been done. It 
does not, however, yield the same predictions as the quantum 
recipe for all physically possible situations. We will return to this 
observation anon. We will also soon take up the critical question 
of whether we are yet justified in asserting that the first wave-
function above corresponds to a situation with a dead cat and the 
second to a situation with a live cat.

The Problem of local beables: flash onTology

Our discussion of the empirical consequences of the GRW theory 
has skated over one critical problem. We have, for example, sim-
ply assumed that if a particle in the system

2
1  | right>e | detection>d + 

2
1  | left>e | no detection>d

receives a GRW hit associated with the position of the particle 
in state | right>e | detection>d, then the empirical outcome is that 
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of a pointer or gear moving one way, while if the hit is in a place 
associated with | left>e | no detection>d, then the pointer or gear 
doesn’t move. But the GRW collapse is nothing but a change in 
the wavefunction or quantum state of a system, and the quantum 
state is itself not anything that exists in physical space. Since the 
pointer or gear is something in space, it is not immediately obvi-
ous how the behavior of the quantum state relates to the behavior 
of the pointer or gear. John Bell called this the problem of local 
beables in a theory. The term “beable” refers to items that exist 
according to the theory, things that are “just there.” (“Beable” is 
pronounced bē- əbl, on the model of “observable.” The “be” in 
“beable” is the English equivalent of the Greek “onta” in “ontol-
ogy”: The beables of a theory just are the ontology of the theory.) 
The quantum state is a beable of the GRW theory, but it is not a 
local beable, because it does not have values at points in space.

As we have seen, the wavefunction of a system is defined not 
on physical space but on a high- dimensional configuration space. 
The wavefunction has no value at a point in the three- dimensional 
physical space of the laboratory. Since the data of any theory are 
reported as the behavior of objects in space, a theory will be very 
difficult to interpret if it does not postulate anything existing in 
space, or indeed does not postulate any familiar space- time struc-
ture at all. And since we are assuming that the wavefunction is 
informationally complete, the motion and location of things in 
space must follow from it somehow. To give the theory empirical 
content, we need some sort of items that exist and move in physi-
cal space, influenced by the quantum state.

The GRW dynamics for the quantum state can be conjoined 
with several different postulates about local beables, thereby cre-
ating several different physical theories. Our rather glib talk of the 
GRW theory has been inaccurate. So far, I have presented only 
the GRW dynamics for the quantum state. We must now consider 
alternative ways to fill out the theory with local beables.

When John Bell presented the theory in his article “Are There 
Quantum Jumps?”4 he was precise about the local beables he was 

4 Reprinted as Chapter 22 in Bell (2004).
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positing. It is a surprising choice for the material occupants of 
space- time, which has since become known as the flash ontology. 
It is best to let Bell speak for himself:

There is nothing in this theory but the wavefunction [Bell 
uses the term “theory” to refer to the mathematical formal-
ism, as will become clear]. It is in the wavefunction that we 
must find an image of the physical world, and in particular 
of the arrangement of things in ordinary three- dimensional 
space. But the wavefunction as a whole lives in a much big-
ger space, of 3N- dimensions. It makes no sense to ask for 
the amplitude or phase or whatever of the wavefunction 
at a point in ordinary space. It has neither amplitude nor 
phase nor anything else until a multitude of points in or-
dinary three- space [i.e., an N- particle configuration] are 
specified. However, the GRW jumps (which are part of 
the wavefunction, not something else) are well localized 
in ordinary space. Indeed each is centered on a particular 
space- time point (x, t). So we can propose these events as 
the basis of the ‘local beables’ of the theory. These are the 
mathematical counterparts in the theory to real events at 
definite places and times in the real world (as distinct from 
the many purely mathematical constructions that occur in 
the working out of physical theories, as distinct from things 
that may be real but not localized, and as distinct from the 
‘observables’ of other formulations of quantum mechanics, 
for which we have no use here). A piece of matter then is a 
galaxy of such events. As a schematic psychophysical paral-
lelism we can suppose that our personal experience is more 
or less directly of events in particular pieces of matter, our 
brains, which events are in turn correlated with events in 
our bodies as a whole, and they in turn with events in the 
outer world.5

Bell’s flash ontology proposes that the localized material con-
tent of space- time is not particles with continuous trajectories, 

5 Bell (2004), pp. 204– 5.
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nor continuously distributed fieldlike entities, nor vibrating 
strings, but rather point events. These points, whose locations cor-
respond to the centers of the Gaussians of the GRW collapses, are 
scattered quite sparsely through space- time. Recall that an indi-
vidual electron only suffers a GRW hit once in 10,000,000 years. 
So according to this theory, overwhelmingly most of the electrons 
associated with your body make no localized mark on space- time 
at all in the course of your entire life. They are all reflected in the 
wavefunction of your body, but nothing in physical space directly 
indicates their existence.

What, then, would this “galaxy of flashes” look like? Leaving 
the protons and neutrons (and hence quarks) aside, there are 
about 1028 electrons in a human body. That means, just from the 
electrons, about 10,000,000,000,000 flashes in a single second. 
The distribution of these flashes in space would trace out a quite 
detailed human form. There would be much less to this form in 
space than we commonly believe, but more than enough to define 
everything that we take to happen at macroscopic scale. The state 
of our brains (i.e., the flashes in our brains) would be reliably cor-
related with this distribution via the same physical mechanism, 
and thereby we can come to know what is happening around us.

But while the number and density of flashes is sufficient 
for a finely detailed spatial distribution at the macroscopic 
scale, it is quite paltry at a microscopic scale. There are about 
40,000,000,000,000 cells in a human body, so (at the very rough 
scale of this estimate) only a few GRW collapses occur per cell 
per second. The distribution of flashes in space associated with a 
human body, then, would carry a lot of information about loca-
tion, shape, and motion at macroscopic scale but almost nothing 
at the scale of individual cells. Of course, if we go about looking at 
a cell through even a regular optical microscope, the magnifica-
tion process would entangle the wavefunction of the individual 
cell with macroscopic aspects of the equipment (or of the brain of 
the observer), and the “invisible” parts of the cell would automati-
cally become registered in the GRW flashes.

This tremendous mismatch between what we think is going 
on spatially in a cell and what is going on according to this theory 
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is extremely disconcerting. Indeed, the flash version of the GRW 
theory borders on a physical realization of a Cartesian demon, 
with the wavefunction playing the role of the deceiver orchestrat-
ing things. The physics predicts and explains the distribution of 
objects in space at the macroscopic scale in a way that renders our 
usual understanding of the goings- on at microscale completely 
wrong. But since ultimately all our empirical evidence for the 
theory must exist at the macroscopic scale, the theory still counts 
as empirically impeccable. Any revulsion toward it is conceptual 
rather than empirical.

At the start of our investigations, we remarked that physics 
is the science of matter in motion, that the theory of space- time 
structure provides the arena for the motion, and that quantum 
theory should provide the detailed structure of the matter inhab-
iting space- time. Up until now, we have discussed many experi-
ments that quantum theory must account for, all described (of 
necessity) at the macroscopic scale. But if the behavior of matter 
at the macroscopic scale is nothing but the cumulative behavior 
of its microscopic parts, then a completed rigorous physics should 
specify what those microscopic local elements are and how they 
behave. The GRW flash theory is our first complete example of 
how such a physics might be constructed.

Many readers may be perplexed that the flash ontology, besides 
being rather odd and counterintuitive, bears no resemblance to 
anything he or she has ever come across in a physics text. I can 
only reiterate: That is not because a standard physics text pro-
vides an alternative account of what is going on at microscopic 
scale, but because it provides no account at all. In the standard 
textbook account, there is no local microscopic structure that can 
underpin macroscopic objects. Here, in contrast, we have a the-
ory where everything is in the fundamental equations and exact 
specification of ontology. The equations are postulated to hold al-
ways and to describe a fundamentally stochastic physics. And the 
behavior of the quantum state is related to events in space- time 
via the flash ontology. There is no mention of “measurement” or 
“observation” or “observables” in the articulation of the theory. 
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The peculiar thinness of the local beables at the microscopic scale 
does not detract from these accomplishments.

The Problem of local beables: maTTer densiTy onTology

The problem of local beables arises acutely for the GRW collapse 
theory in part because the construction of the theory tightly fol-
lows the structure of the quantum recipe. The recipe, in turn, 
provides clear mathematical expression only for the wavefunc-
tion and its smooth linear Schrödinger evolution. GRW replaces 
the vague “assign these probabilities to the possible outcomes of 
measurement when a measurement occurs” instruction of the 
recipe with sharp mathematics. But that mathematics still only 
deals with the dynamics of the wavefunction and, hence, of the 
quantum state that it represents. Since the quantum state is not 
a local beable, all this precision has no logical consequences for 
what the local beables of the theory might be. The only inter-
pretive constraint we have adopted is that the wavefunction be 
informationally complete, so that the distribution in space- time 
of whatever local beables we happen to postulate must be deter-
mined by it. But this interpretational constraint still leaves a lot 
of latitude in constructing a theory. Bell’s flash ontology provides 
one way to complete the construction, using the discreteness and 
spatiotemporal location of the collapse centers as the key to the 
local beables. One might say that in the GRW theory, the col-
lapses account for the “particlelike” aspect of the wave- particle 
duality, and the flash ontology makes use of this in postulating the 
local beables. But the discreteness of the collapses in time yields 
a corresponding sparseness of the flashes. Most of the time, there 
is literally nothing at all material that is localized in space- time.

It is equally natural, beginning with the wavefunction evolv-
ing by Schrödinger’s equation, to be impressed by the wavelike 
aspects of the quantum state and to seek a correspondingly wave-
like local beable. As we have remarked, the wavefunction of a sin-
gle spinless particle is a complex function on physical space- time, 
so it is easy enough to associate it with a local beable. In such 
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a picture, a single electron in a Double Slit experiment literally 
spreads out in space, with some of it passing through each slit 
and the two parts coming together later to interfere. One prob-
lem with this picture is accounting for the localized individual 
mark that eventually forms on the screen. But if we supplement 
the Schrödinger dynamics with the GRW collapses, this problem 
seems tractable: When a GRW hit occurs, the spread- out electron 
gathers itself up in one place, with almost all the density suddenly 
concentrated within 10−5 cm of the location where, in the flash on-
tology, a flash would have occurred. And as a substantial bonus, 
any other perfectly entangled electrons will experience a similar 
sudden contraction.

But so far, all this talk of the electron being spread out in space 
and then suddenly contracting in space is loose talk. The wave-
function of any system with more than one particle is not even 
mathematically a function over space: it is a function over con-
figuration space. And similarly, the collapse and contraction are 
not in physical space but in the much higher- dimensional space. 
So it is not immediately obvious how to use the behavior of the 
wavefunction in a scheme for postulating a more wavelike local 
beable.

The problem, essentially, is that the structure of the wavefunc-
tion must somehow be projected down from configuration space 
into physical space, and then the theory must postulate a local be-
able corresponding to that projection. In such a theory, the GRW 
collapses will not correspond to the sudden creation of a pointlike 
local beable, as happens in the flash theory, but rather to a sudden 
change in the distribution of a continuously distributed beable.

In the nonrelativistic theory, there is an obvious and tempting 
way to define such a projection. The wavefunction is defined over 
configuration space, and the squared amplitude of the wavefunc-
tion forms, in the mathematical sense, a probability measure over 
the set of all possible configurations. If we ignore the suggestive 
word “probability” here, we can just say that the squared ampli-
tude of the wavefunction defines a weighting of various config-
urations of particles. The natural suggestion, then, is to regard 
this weighting not as a probability but instead as a measure of 
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how much of each particle is in each configuration. That is, if the 
squared amplitude of the wavefunction assigns a weight of .25 to 
a configuration in which a particular electron is on the left and a 
weight of .75 to a configuration in which that electron is on the 
right, then somehow .25 of the matter of the electron is on the left 
and the other .75 of the matter is on the right.

Since each possible configuration assigns an exact position to 
each particle, the weighting of the configurations can in this way 
be used to define a matter distribution for each particle. The mat-
ter of the particle literally gets smeared out over space. And as 
the wavefunction evolves in time, the matter distribution corre-
spondingly evolves in time. This is a matter density local ontology 
of a GRW collapse theory.6

The local beables of the matter density theory have none of the 
peculiarities of the flash ontology. Every particle’s matter always 
exists and is distributed some way in space. In a Double Slit ex-
periment, the matter density of the electron literally spreads out 
and passes through each of the slits like a water wave. (In the flash 
ontology, by contrast, absolutely nothing exists in the space be-
tween the two slits and the screen, except on the very, very, very 
rare occasion when the electron suffers a collapse in transit.) That 
distribution will never be pointlike in any respect: The GRW col-
lapses tend to concentrate the matter density in certain finite re-
gions but never at a point. The matter density at the microscopic 
scale may be somewhat more spread out and amorphous than 
one would have thought, but it will certainly not be sparse. And at 
macroscopic scale, as with the flash ontology, the matter distribu-
tion will correspond to what we believe about where things are. 
Or at least it does so subject to some caveats.

The main caveat was noticed early on and goes by the name 
“the tails problem.” The “tails” at issue are the infinitely extended, 
never- zero tails of the Gaussian that multiplies the wavefunc-
tion during a GRW hit. Since the tails are nowhere actually zero, 
the matter distribution after a hit is never driven to exactly zero 

6 For a more careful physical discussion of this sort of theory, see Ghirardi, 
Grassi, and Benatti (1995).
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anywhere by the hit. To take a concrete example, if a Schrödinger- 
cat- like macroscopic superposition 2

1  | right>e | detection>d + 
2

1  | left>e | no detection>d suffers a GRW collapse, the collapse will 
drive one or the other components of the superposition almost 
to zero and therefore (given a matter density ontology) will con-
centrate almost all the matter into one configuration or the other. 
That is, the post- hit state will be something like

(1 - )1/2 | right> | detection> - ()1/2 | left> | no detection>

or ()1/2 | right> | detection> - (1 - )1/2 | left> | no detection>.

Subsequent hits, which are almost certain to occur on the ini-
tially favored configuration, will reduce the stray matter density 
exponentially lower. But for all that, the low density of extraneous 
matter will always exist. Should its existence concern us?

When these matters were first discussed in the philosophical 
literature, the problem of the tails seemed critical.7 But that was 
because the basic interpretive principles used at that time were 
different from those we have been pursuing here. In particular, 
those discussions began with the textbook idea that Hermitian 
operators represent possible physical properties of a system and 
that the condition for a system to actually have the corresponding 
property is for its wavefunction to be an eigenstate of the opera-
tor. The value of the property would then be the corresponding 
eigenvalue. This interpretive principle is sometimes known as the 
eigenstate- eigenvalue link.

If one endorses this way of ascribing properties to physical 
systems, then the tails problem becomes acute, because a GRW 
collapse will not result in an eigenstate of the desired operator. 
If, for example, to have the property “the pointer having swung 
to right” a particular system must be in the state above labeled 
“|detection>,” then the first post- hit wavefunction above does not 
describe a detector with it pointer swung to the right. The tiny bit 
of remaining entanglement prevents that state from having the 
desired property.

7 See, for example, David Albert and Barry Loewer (1996).
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The postulation of local beables cuts through this supposed 
difficulty. Our fundamental principle has been that the empirical 
consequences of a physical theory are determined by what the 
theory implies about the motion of matter, or better, about the 
distribution of local beables in space- time. For example, suppose 
that two theories have the same implications about what is in 
space- time and how it is distributed. Then it is hard to see how to 
maintain that they differ in their empirical content. If this is right, 
then the attribution of various properties to systems (e.g., the 
property of having x- spin up) does not, in itself, directly affect the 
empirical content of the theory unless the presence or absence of 
the property makes a difference to how matter will— or might— 
move. But in the GRW theory, the location of the local beables in 
space- time is completely determined by the quantum state, and 
the dynamics of the quantum state is probabilistically governed 
by the dynamical law. Any attempt to attribute “properties” to the 
system that go beyond specifying what the quantum state is and 
how the local beables depend on it would be idle. Nothing of sig-
nificance rides on whether such additional properties exist. So it 
becomes irrelevant, in this theory, whether the wavefunction is 
an eigenstate of this or that operator.

Instead the question is whether there is any problem extract-
ing a description of the macroscopic distribution of objects in 
space- time from the microscopic distribution. In the case of the 
flash ontology, no such problem presents itself. The only local be-
ables associated with a system are the flashes associated with col-
lapses on particles in the system, and the macroscopic location, 
shape, and motion of the object is nothing more than the collec-
tive distribution of those flashes in space- time. (Similarly, coun-
terfactuals about how the object would or might have behaved 
under different circumstances are to be analyzed in terms of the 
probabilities of flash locations under the counterfactual supposi-
tion.) The further existence of tails to the wavefunction has no 
bearing on the actual spatiotemporal behavior of a system, given 
that no collapses actually occur in the location of the tails.

In the matter- density ontology, though, there really is some-
thing in space whose structure and behavior are determined by 
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the behavior of the tails. The density of this matter is astonishingly 
small, but it is there nonetheless. At a first pass, for example, one 
might say that while most of the matter density when the quantum 
state is (1 - )1/2 | right> | detection> - ()1/2 | left> | no detection> is 
in the shape of a detector whose pointer has (for example) swung 
to the right, there is still a tiny bit of matter density in the shape of a 
pointer that has not moved. (This first- pass description is, as David 
Wallace has noted, not technically correct: The way that the tails of 
the Gaussian fall off spatially implies that the matter distribution in 
the tail of the Gaussian will be distorted. Much more matter will be 
in the spatial direction closest to the collapse center.) It is tempt-
ing to advert to the smallness of this residual matter density as a 
reason to ignore it altogether, but the conceptual situation is not 
very straightforward. Here, for example, is a remark made by the 
physicist Philip Perle:

In the GRW theory and the theory presented here [i.e., the 
theory discussed below] the state vector is never completely 
reduced. There is always a small but nonvanishing piece of 
“what might have been” included in the state vector. We do 
not regard this as satisfactory. If the reduced state vector is 
to correspond to what is actually observed in nature, it is 
hard to see what meaning can be given to an additional term 
that describes another observation, no matter how small.8

Perle’s comments concern the state vector (i.e., the wavefunc-
tion) rather than the matter density, but the problem is obviously 
the same. Reduction of the density of matter does not eliminate 
it altogether, and if all it takes to make a physical object is to have 
some matter that behaves a certain way, then the GRW collapses 
with a matter density ontology seem to produce a Many Worlds 
theory, with a high-  and a low- density Schrödinger cat at the end 
of the experiment.

If we do ignore the low- density matter, we can accept that the 
GRW collapse theory with a matter- density ontology makes the 
same predictions about the macroscopic behavior of objects as 

8 Perle (1989), p. 2289.
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the GRW collapse theory with a flash ontology. Furthermore, 
the microscopic account is much less jarring. And as a further 
mark in its favor, the matter- density ontology is easily adaptable 
to modifications of the basic dynamics. For example, the discrete 
character of the GRW collapses can appear unnatural and ad hoc. 
This inspired research into continuous versions of the dynamics, 
known as Continuous Spontaneous Localization (CSL) theories. 
Pioneering work on such models was done by Perle (1989). In a 
CSL theory, the wavefunction evolves smoothly, albeit randomly. 
A given initial wavefunction can evolve different ways, with the 
basic dynamical equation providing the probability for each pos-
sible evolution.

Since no sudden “hits” or “jumps” occur in a CSL model, there 
is no obvious way to adapt a flash ontology to it. But the matter- 
density ontology works in exactly the same way, unaffected by 
the smoothing out of the dynamics. This observation reinforces 
my contention that GRW with a flash ontology and GRW with a 
matter- density ontology are really quite different physical theo-
ries despite their empirical equivalence.

The flash ontology and the matter- density ontology provide 
different solutions to the problem of local beables, resulting in 
different physical accounts of what exists in the world. But a 
strong contrarian line of argument maintains that all this focus 
on the local beables postulated by a theory is mistaken. We turn 
to this argument next.

The Problem of local beables: emergence

Experiments and their outcomes are described in terms of the 
positions and motions of various sorts of macroscopic objects in 
a familiar space- time setting. To extract predictions about how 
experiments will (or might) come out from a description in the 
language of fundamental physics, then, one must be able to de-
rive claims about the behavior of macroscopic bodies from the 
theoretical description. Bell observed that the postulation of local 
beables in a familiar sort of space- time solves this problem: The 
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spatial behavior of the macroscopic objects is understood as just 
the collective behavior of the local beables associated with the 
system. At the microscopic scale, these might be postulated to 
be flashes, mass densities, particles, or something else. If one asks 
how we can come to know about this macroscopic behavior, the 
theory answers by showing how the states of our brains (includ-
ing their local beables) can, according to the theory, become reli-
ably correlated with these macroscopic shapes and motions.

In Bell’s approach, a physical theory should postulate as fun-
damental features of the physical world both a macroscopically 
familiar space- time structure and some sort of localized physi-
cal items in that structure. But many physicists and philosophers 
have maintained that this need not be done. Rather, they claim, 
the physics can postulate a very different sort of fundamental 
physical ontology, from which the more familiar sort of descrip-
tion of the space- time structure and its local contents emerges. 
In the case of a theory like GRW, it is further claimed that the 
everyday macroscopic picture can emerge from a fundamental 
ontology that contains only the quantum state, with no local be-
ables or familiar space- time at all. If this claim is correct, then the 
last two sections have been a waste of time: The behavior of the 
GRW quantum state alone suffices to ground the whole physics.

One of the most explicit proponents of this account of emer-
gence for the GRW theory is David Albert.9 Albert has described 
the sort of emergence he has in mind in some detail, so let us 
examine his account closely. As we will see, if sense can be made 
of the notion of emergence here, it might be of use to the Many 
Worlds theory as well. Albert’s contention is that there is no need 
for— and indeed no advantage to— supplementing the GRW 
quantum state and its dynamics with any further ontology at 
all. All there is fundamentally, in Albert’s version of GRW, is the 
quantum state evolving in accordance with a certain (stochas-
tic) equation of motion. From this evolution a familiar world of 
objects located in a familiar low- dimensional space- time is sup-
posed to emerge of metaphysical necessity. We do not postulate 

9 See Albert (2014), Chapters 6 and 7.
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either a low- dimensional space- time or any of Bell’s local beables 
in it, but rather recover them by metaphysical analysis.

Before examining Albert’s arguments in detail, it may help to 
pose one obvious question. We have just finished discussing two 
different versions of the GRW theory. These theories agree about 
the dynamics of the quantum state: It is governed by the same 
equation in both cases. But they disagree about the particulars of 
the local beables, and this disagreement is quite substantial. So we 
might ask: If, according to Albert’s account, some local beables in 
a familiar low- dimensional space- time emerge from just the dy-
namics of the quantum state, which local beables so emerge? Is it 
the flash ontology? The matter- density ontology? Both? Neither? 
What exactly is going on at the microscale in this picture?

Albert’s reply10 is that the question is not well posed. The no-
tion of emergence he has in mind has an approximative char-
acter, and there can be emergent local objects in an emergent 
low- dimensional space- time at the macroscale but no emergent 
localized parts of them at fine levels of (emergent) microscale. So 
the relation between the spatial characteristics of these emergent 
objects and the spatial characteristics of their parts is not at all the 
same as the relation between macroscopic objects and flashes in 
the flash ontology or macroscopic objects and matter density in 
the matter- density ontology. In those theories, we postulate that 
some local beables exist with a sharp spatial distribution at all 
scales and that the facts at grosser scales are just the collective 
facts at finer scales described in a coarse- grained vocabulary. If 
this account of emergence is going to work at all, it will not leave 
us with anything like the relation between large objects and their 
smaller parts that we have been presuming.

Albert’s strategy has two steps. The first is to argue that in 
any theory, the right way to metaphysically define the nonfun-
damental objects that emerge from the fundamental ontology is 
functionally. The second step is to argue that in the “bare” GRW 
theory (i.e., the GRW theory with no additional fundamental on-
tology besides the quantum state) there will be items that satisfy 

10 David Albert, personal communication, August 2014.
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the relevant functional definitions. So in that theory, familiar 
low- dimensional space inhabited by macroscopic objects already 
exists without reference to any postulated fundamental low- 
dimensional space or fundamental local beables in that space.

What do the relevant functional definitions look like, and 
what, given the fundamental ontology of the theory, is supposed 
to satisfy these definitions?

At the level of common macro- objects, the answer to the first 
question is rather vague. We are told, for example, that “what it 
is to be a table or a chair or a building or a person is— at the end 
of the day— to occupy a certain position in the causal map of the 
world.”11 But what exactly a “causal map” is, or what a “position” 
in such a map is, or how something can “occupy a position” in 
the map, is not spelled out for these cases. How is one to go about 
specifying a “position in a causal map” for a table? (In contrast, 
there is no obvious problem specifying typical sorts of shapes and 
sizes of tables, how they typically move in space, and how they are 
related to one another and other things in space— just the sorts 
of things that can be easily read off a distribution of local beables 
in space- time.) Further, one of the typical causal contributions 
of tables is to keep things from falling to the floor, but a con-
cept like “falling to the floor” seems much easier to characterize 
in terms of positions and motions than in terms of an abstract 
causal structure.

Even more puzzling in Albert’s account is what is supposed 
to occupy these positions in causal maps. In one discussion of 
“emergent” particles in an “emergent” low dimensional space- 
time, what occupies the position are certain sets of coordinates. 
In a different context, mathematical projections of a single point 
particle in a high- dimensional space to lower- dimensional sub-
spaces are recruited to do the job. Albert calls these mathemati-
cally defined projections “shadows.” Think of the way the motion 
of a fly in a three- dimensional space can be projected down to 
the motion of the shadow of the fly on the two- dimensional floor, 
but leave aside any actual light casting a shadow or any floor: This 

11 Albert (2014), p. 127.
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is a purely mathematical rather than physical operation. In the 
following passage, Albert considers an unfamiliar alternative to 
the classical Newtonian theory of many point particles moving in 
a low- dimensional space (and hence having a configuration that 
changes in time). In the alternative theory, there is only a single 
particle (the so- called world particle or “marvelous point”) mov-
ing in a very high- dimensional space, of the same dimensionality 
as the configuration space of the normal theory. The critical argu-
ment is this:

And if we pretend (just for the moment) that the laws of or-
dinary three- dimensional Newtonian mechanics, together 
with the three- dimensional Hamiltonian in equation (2), 
can accommodate the existence of the tables and chairs and 
baseballs of our everyday experience of the world— then 
we shall be able to speak (as well) of formal enactments of 
tables and chairs and baseballs, by which we will mean the 
projections of the position of the world particle onto tensor 
products of various of the (3i- 2, 3i- 1, 3i)C [these terms in-
dicate three orthogonal directions in the high- dimensional 
space] subspaces of the D- dimensional space in which the 
world particle floats. And these formally enacted tables and 
chairs and baseballs are clearly going to have precisely the 
same causal relation to one another, and to their constitu-
ent formally enacted particles, as genuine tables and chairs 
and baseballs and their constituent particles do.

And insofar (then) as we have anything in the neigh-
borhood of a functionalist understanding of what it is to 
be a table or a chair or a baseball— insofar as what it is to 
be a table or a chair or a baseball can be captured in terms 
of causal relations of these objects to one another, and to 
their constituent particles, and so on, then these formally 
enacted tables and chairs and baseballs and particles must 
really be tables and chairs and baseballs and particles. And 
insofar as what it is to be a sentient observer can be captured 
in terms like these, then projections of the world particle 
onto those particular tensor products of three- dimensional 
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subspaces of the D- dimensional space which correspond to 
such “observers” are necessarily going to have psychologi-
cal experience. And it is plainly going to appear to such ob-
servers that the world is three- dimensional!12

This argument provides the resources needed to demonstrate 
that the principles invoked here cannot be acceptable.

Consider a regular low- dimensional Newtonian world with 
tables and chairs and baseballs all composed of particles. And 
now define the “3- foot north projection” of any particle to be the 
point in space exactly three feet to the north (i.e. in the direc-
tion from the center of the earth to the center of Polaris) of the 
location of the particle. Then trivially the 3- foot north projections 
of all the particles in a table will be a set of locations that have 
the same geometrical structure as the particles in the table. And 
the 3- foot north projections of all the actual particles in tables 
and chair and baseballs will formally enact, in Albert’s sense, the 
tables and chairs and baseballs and observers whose projections 
they are. But these “formal enactments” are clearly not tables and 
chairs, and the 3- foot north projection of a person having a head-
ache is clearly not an actual sentient person with a headache. It 
might, in fact, just be a set of points in a vacuum (if the person 
is in a spaceship). But the 3- foot north projections in this world 
have all the same credentials— indeed even better credentials in 
terms of geometrical structure— as Albert’s more abstract projec-
tions do. So Albert’s argument cannot go through.

Where does it break down? One might contend that it breaks 
down at the claim that the projections stand in any causal rela-
tions to one another at all. And one might contend that it breaks 
down with the assumption that any of these sorts of macroscopic 
objects can be characterized as “positions in the causal map of the 
world.” One might contend that it breaks down at both points. 
Individual readers might disagree about exactly where the flaw 
in the argument is. But on the assumption that no one will accept 
the existence of infinitely many numerically distinct, qualitatively 

12 Albert (2014), pp. 128– 29.
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identical tables and chairs and sentient observers (one for each 
N- foot north projection) in this scenario, then everyone will 
agree that the argument fails.

Recall Bell’s description of what one is doing by postulating 
the flash ontology. The mathematical objects (x, t) are character-
ized by the mathematical structure of the wavefunction evolu-
tion: They are not physical at all. Each such mathematical object, 
given a coordinatization of space- time, corresponds to a physical 
point in a physical space- time. Those physical points exist inde-
pendently of whether one postulates any flashes or not. What is 
needed now is the introduction of a novel physical entity: a point- 
like physical entity we have called a “flash.” Flashes do not occur 
at every space- time point. The theory postulates both the exis-
tence of such things and characterizes (given an initial quantum 
state) a probability distribution over all the possible collections of 
flashes that might occur. A mere mathematical projection from 
the behavior of the quantum state down to the physical space- 
time does not make for any new physical ontology at all. In short, 
physical tables cannot be composed from mathematical projec-
tions. But mathematical projections can provide the resources to 
postulate the locations of physical entities, in a theory committed 
to such entities.

“Emergence” is a slippery word. Some forms of emergence— 
how an apparently continuous four- dimensional space- time 
could emerge from a discrete microscopic structure, or a seem-
ingly continuous body of water could emerge from fundamen-
tally molecular matter, or Newtonian gravity could emerge 
from the General Theory of Relativity in the limit of low relative 
velocities— are conceptually clear and straightforward. All that is 
meant by “emerge” here is that a literally false theoretical account 
(e.g., of water as a continuous fluid) can yield excellent approxi-
mations at certain scales. But how a low- dimensional space- time 
with particular macroscopic bodies could emerge from a funda-
mentally high- dimensional reality of the kind Albert postulates is 
a different matter. Albert has proposed a criterion for such emer-
gence, but either the criterion itself is incorrect or the suggestion 
that it applies in the way he suggests to mathematical projections 
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is. Any version of a spontaneous collapse theory that forgoes the 
postulation of local beables in a low- dimensional space- time 
faces substantial problems explaining how the physical world it 
describes could relate to the sort of experimental outcomes we 
are trying to explain.

The exPerimenTs

In chapter 1, we discussed eight experiments, with the intention 
of using them as touchstones. One truly understands a proposed 
fundamental physical theory only if one understands how it 
would describe what is going on in these experiments and one 
understands how the theory could accurately predict the reported 
outcomes of the experiments. The experiments themselves are 
described at the macroscale, a level of description consistent with 
many different microscopic realities. Here, let us rehearse how 
these accounts would go for the GRW wavefunction dynamics 
with flash ontology and the GRW wavefunction dynamics with 
matter- density ontology.

In each of these theories, the fundamental physical description 
we have to work with includes a quantum state and distribution 
of local beables for the entire laboratory set- up. Any complete 
physical theory must be capable of treating the entire situation 
in terms of its postulated fundamental physical ontology. There 
can be no “measurement problem” or special axioms for mea-
surements, since laboratory operations are treated like all other 
physical interactions. There will be a quantum state and local be-
ables for everything in the lab, system and apparatus, observed 
and observer alike.

Let us presume that each of our experimental situations is de-
scribed by some wavefunction for the entire laboratory set- up. 
We also assume that the experiment starts in a product state of 
a quantum state for the apparatus and a quantum state (supplied 
by the quantum recipe) for the electrons or other particles pass-
ing through the apparatus. Given such an initial state, the GRW 
dynamics will provide a probability measure for all possible 
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collections of GRW collapses that might occur. And given the de-
pendence of the location of local beables on the quantum state, 
that implies a probability measure over the possible distributions 
of the local beables. What we would like to show is that this prob-
ability measure makes it overwhelmingly likely that the outcomes 
of the experiments are what we take them to be, and what the 
quantum recipe predicts them to be. In the case of the matter- 
density version, we identify the outcome of an experiment with 
the behavior of nearly all of the matter density, ignoring the small 
quantity associated with the tails of the Gaussian.

Since the fundamental physical account has a distribution of 
local beables in space- time, it is obvious how to get from the mi-
croscopic description to the macroscopic and hence how to make 
contact with the language in which the experiment is described. 
Indeed, it seems clear how to do this using only the locations of 
the microscopic distribution of local beables as input. But there is 
no need to limit ourselves to just this information. Any informa-
tion that can be derived from the fundamental physical descrip-
tion is available for use.

For example, the quantum state of our total system will be 
the sort of quantum state used to describe a system that contains 
electrons, protons, and neutrons (or electrons and quarks). So in 
the flash ontology or the matter- density ontology, the description 
of the distribution of local beables provided by the fundamental 
physics is not merely that there is some matter density or other in 
a particular location but that it is the matter density of an electron 
or of a proton. These different species are distinguished in the 
theory by constants, such as mass and charge, that appear in the 
wavefunctions and Hamiltonian of the system. In principle, then, 
we can extract the familiar macroscopic description not from just 
the distribution of local beables but from the characterization of 
the sort of particles whose local beables they are.

The simpler theory to treat in this way is the mass- density 
theory. Macroscopic equipment will appear in the fundamen-
tal account as a fairly stable mass density of electrons, protons, 
and neutrons, distributed so that the various atomic numbers 
of the materials would be evident at the microscopic scale. The 
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cathode ray tube would be emitting a constant stream of electron 
mass- density (because the wavefunction of the system would be 
a superposition of individual electron emissions happening at 
different times). Some of this stream would reach the screen (Ex-
periment 1: Cathode Ray Tube); be diffracted by the single slit and 
reach the screen (Experiment 2: Single Slit); or go through both 
slits, diffract, interfere into bands of greater and lesser density, 
and then reach the screen (Experiment 3: Double Slit). The com-
plete physical description of the situation in every run of the ex-
periment up to this point would be essentially identical (modulo 
random small contractions of the mass- density of the equipment 
due to collapses) no matter where the marks on the screen are 
later found. Indeed, the macroscopic distribution of mass den-
sity in each experiment will be exactly the same until some large 
system becomes entangled with the electron wavefunction in the 
right way. For example, a mechanical counter might be passed 
over the screen with an interaction Hamiltonian that would make 
the wavefunction evolve, by pure linear Schrödinger evolution, 
into a superposition of macroscopically different states, namely, 
having detected a mark at a particular place on the screen and 
not having detected a mark. Only at this point will the GRW col-
lapses yield macroscopically different matter distributions. And 
the GRW dynamics implies that the probability of a collapse 
sending the matter distribution of the counter into the “detect” 
configuration rather than the “no- detect” configuration will be 
the probability assigned by the quantum recipe to getting a mark 
on the screen in that location.

Repeating the experiment over and over, by the law of large 
numbers, we eventually get a very high probability that the 
distribution of positions where marks are detected will be pro-
portional to the squared amplitude of the wavefunction of the 
electron at that point on the screen. In this way, the theory pre-
dicts the reported data about interference bands in the Double 
Slit experiment.

Note that the varying distribution of matter- density of a single 
electron at the screen is not at all what is reported in the data. 
Each individual electron produces a single data point. Note also 
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that the probabilities assigned in the theory to macroscopically 
different outcomes all derive from the fundamentally probabilis-
tic evolution law. God does play dice in this theory: Experiments 
that start out physically identical will typically end up physically 
different. The fact that the matter density of a single electron dis-
plays the interference pattern it does at the screen is suggestive, 
but it is incidental to the empirical outcome. What accounts for 
the ultimate outcome is the interference in the quantum state and 
the amplitudes for different macroscopic outcomes that eventuate 
when the electron gets entangled with the macroscopic counter. 
It is at this point that the probabilities for the GRW collapses play 
their essential role, since the individual electron is fantastically 
unlikely to suffer any collapse during the experiment.

The interference bands go away in the Double Slit with Moni-
toring experiment, because the interference in the quantum state 
does disappear, as has already been described. Correspondingly, 
the matter density of a single electron at the screen will show no 
interference bands. The addition of spin to the quantum state 
makes no difference at all to the matter distribution until the spin 
degrees of freedom become entangled with spatial degrees. In 
the experiments using Stern- Gerlach magnets and the interfer-
ometer, the matter density of a single electron will get split and 
divided among the various paths through the device, except in 
the extremely unlikely event of a GRW hit in transit. If that event 
were to occur, almost all the matter density would suddenly be-
come collected into one location along one path. The subsequent 
behavior would not show the usual interference effects, produc-
ing a slight deviation from the predictions of the quantum recipe.

Because a GRW hit causes a sudden global change in the quan-
tum state, it also causes a sudden global change in the distribution 
of matter. Matter disappears from some locations and appears in 
others, which could be far away. So the behavior of matter density 
at the microscopic scale in this theory illustrates exactly the sort 
of jumpy correlated- over- long- distance behavior that Einstein 
discerned in the standard account of quantum theory. Even the 
EPR set- up, whose statistical predictions can in principle be re-
covered without any spooky action- at- a- distance, would display 
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evident action- at- a- distance if one could directly see the matter 
density. God not only plays dice but also uses telepathic methods, 
just as Einstein claimed. In an EPR test with Stern- Gerlach mag-
nets oriented in the same direction, for example, the physical sit-
uation in different runs of the experiment is essentially identical 
until a superposition of macroscopically different matter- density 
distributions starts to form on one side or the other. A GRW hit 
will soon shift most of the matter density to one outcome or the 
other, and the matter density on the other side will simultane-
ously change. It is through this coordinated global change of the 
physical state on both sides, no matter how distant, that the ob-
served distant correlations are produced.

The same distant correlations produced by the collapses allow 
the theory to predict violations of Bell’s inequality. That is, the 
collapse dynamics is not local in Bell’s sense, so the constraints 
he demonstrates for local theories do not apply. If one could see 
the matter density shift around at the microscopic scale in the 
nonrelativistic setting, this nonlocality would be immediately 
obvious. And once again, this behavior of the microscopic mat-
ter distribution is not itself doing the heavy explanatory lifting: 
that is achieved by the coordinated global change in the quantum 
state, which the distribution of matter reflects.

In the mass- density theory, the reflection of the quantum state 
in the spatial matter distribution exists even for the low- amplitude 
parts of the quantum state, hence the tails problem. In this theory, 
the various possible outcomes of the experiment all continue to 
be inscribed in the actual behavior of matter in space, although 
at very different scales of density. Whether this difference in scale 
matters, though, is a subtle problem. If all the important concepts 
used to extract a macroscopic description from the microphysics 
are functional, then one could argue that the overall scale of a 
matter density is irrelevant to its functional characterization. If 
so, then both possible outcomes exist.

The flash theory, by contrast, does not suffer from this issue. 
At the level of what exists in space- time, there is no realization 
at all of one of the possible outcomes. The distribution of flashes 
corresponds to a unique course of macroscopic behavior. At the 
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microscopic level, no matter “disappears” when a GRW collapse 
occurs; only a single flash appears. And there is no low- density 
ghost of the other possible outcome.

Of course, at the microscopic scale, astonishingly little is hap-
pening at all. Which raises a fascinating interpretive question: If 
the macroscopic spatial distribution of matter is determined by 
the microscopic distribution, just how detailed must the micro-
scopic distribution be to constitute an acceptable physical theory? 
No sharp boundary exists here. In the flash theory, there is enough 
of a presence in space- time to unproblematically validate the sort 
of macroscopic descriptions found in the data reports and not 
nearly enough to validate the usual description of the microscopic 
structure of things. I have argued that this suffices to make the 
theory empirically adequate. Still, one might find it objectionable.

The EPR phenomena, as in the matter density theory, depend 
on the nonlocality implicit in the wavefunction collapse. At a 
mathematical level, this manifests itself in the probability struc-
ture of the predictions. Although there is a fundamental, irreduc-
ible 50% chance in an EPR z- spin set- up that the apparatus on the 
right displays an “up” result (by, say, the position of a pointer) and 
an irreducible 50% chance that the apparatus on the left displays 
an “up” result, there is zero chance that they both register “up” 
results. These chances are conditional on the complete physical 
state at the beginning of the experiment, and the probabilities de-
rive from the indeterministic dynamics. The outcome on one side 
is not statistically or probabilistically independent from the out-
come on the other, and the observed correlation is not the result 
of any predetermination in the initial conditions of the experi-
ments. For in this theory, all experiments start out in exactly the 
same initial state. Still, the outcome on one side conveys informa-
tion about the outcome on the other. Since this information is not 
already present in the initial state, there must be a real, physical 
dependency between the behaviors on both sides.

Since a nonlocality of this sort is employed to produce the re-
sults of the EPR experiment (where the phenomena themselves 
do not demand it), it is not too surprising that the theory can 
predict violations of Bell’s inequality. The inequality only holds 
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for theories whose physics is local and the GRW collapses (with 
their attendant consequences for behavior in space- time) are not.

The GRW theory, allied with either of these ontologies of 
local beables, has features that are not theoretically elegant. In 
the spontaneous collapse theory, the alternation between linear 
deterministic and nonlinear indeterministic evolution of the 
quantum state is jarring. This can be ameliorated in a CSL, al-
though one would also lose the resources to specify a flash ontol-
ogy. The appearance of new constants of nature quantifying the 
timing and spatial localization of the collapses is a surprise. And 
both ontologies of local beables appear somewhat problematic. 
GianCarlo Ghirardi himself remarks that the original theory was 
proposed as phenomenological rather than as a final, exact phys-
ics. But despite the somewhat provisional character of the theory, 
one should never lose sight of what has been achieved.

The GRW and CSL theories demonstrate that the sorts of phe-
nomena described in our eight experiments— phenomena that 
display the types of effects most characteristic of quantum theory— 
can be accounted for by a physical theory devoid of any impreci-
sion, unclarity, or obscurity in its physical postulates. The theory 
is articulated via sharp mathematics, with no mention of “obser-
vation,” “observables,” or “measurement.” Different versions of the 
theory commit themselves to particular local beables, precisely dis-
tributed at microscopic scale, and the macroscopic behavior of the 
macroscopic objects mentioned in our experiments is understood 
as just the collective behavior of these microscopic facts.

To a great extent, the basic architecture of the GRW theory 
mimics the structure of the quantum recipe. But in place of the 
Born’s Rule invocation of the vague concept of measurement, 
the GRW dynamics employ a sharp mathematical equation. The 
dynamics is universal: It obtains at all times and in all circum-
stances. There are no proposed modifications to logic or to prob-
ability theory; both of these topics are completely classical. And, 
in terms of this physical ontology and its exact dynamics, the pre-
dictions of the quantum recipe can be recovered. The claim that 
the phenomena of our experiments cannot be understood using 
classical logic or classical probability theory is therefore demon-
strably false.
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To be precise, the exact quantitative predictions of the stan-
dard recipe are approximately recovered. As noted earlier in the 
chapter, the collapses in theory must not narrow the wavefunc-
tion too extremely, as that would inject tremendous energy into 
the system, leading to spontaneous emission of electrons and 
spontaneous heating. Even the milder localization used in the 
theory has these consequences. If the GRW dynamics is correct, 
for example, the universe as a whole should be slightly warmer 
than the standard recipe predicts. Careful monitoring of samples 
of matter should show some anomalous emission of electrons. 
The scale of these effects is determined by the precise values of 
the new constants of nature introduced in the theory.

Physicists interested in collapse theories have calculated these 
effects and considered how experiments could verify or refute the 
theory. At this time, none of these effects have been seen. These 
null observations have put bounds on the possible values of the 
GRW constants but have not yet ruled out the approach. More 
exacting experiments may do so. A helpful review of the experi-
mental situation can be found in Bassi and Ulbricht (2016).

Objective collapse theories of the quantum state are not the 
only sorts of theories that can achieve this conceptual and physi-
cal precision and clarity, but the GRW theory shows how this 
approach can be made to work. Other physicists who favor ob-
jective collapse theories have preferred to try to tie the collapses 
to a physical trigger rather than leaving them as a matter of pure 
chance. Roger Penrose, for example, has speculated that objec-
tive collapses are connected to gravity. The advantage of the GRW 
theory and its modifications and successors is that the speculative 
ideas are replaced by exact mathematics.

In the next chapter, we will see how a fundamentally different 
approach, with no collapse of the wavefunction, can also account 
for these same phenomena.

furTher reading

The GRW collapse theory is presented at various levels of tech-
nical detail in the following works: Albert (1992), chapter 5; Bell 
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(2004), chapter 22 (see also chapter 7 of this book for Bell’s early 
discussion of the role of local beables in interpreting a physical 
theory); Ghirardi (2005), chapter 17; and Norsen (2017), chapter 9.

For a nontechnical sketch of a very different approach to wave-
function collapse, see Penrose (1989), pp. 367– 71. For yet another 
approach, see Okon and Sudarsky (2014).
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CHAPTER 5

Pilot Wave Theories

The archiTecTure of collaPse  theories can be regarded as an at-
tempt to follow the quantum recipe as closely as possible. A dy-
namics is specified for the quantum state that makes its behavior 
mirror that of the mathematical wavefunction used to make pre-
dictions. The “wave” (delocalized and interference) aspects of the 
phenomena arise from the linear evolution of the wavefunction, 
and the “particle” (highly localized) aspects from the collapses. 
But the wavefunction is not straightforwardly connected to phys-
ical space- time, nor is the quantum state. That connection is me-
diated via the local beables, whose distribution is determined by 
the quantum state. In this architecture, the exact nature of the 
local beables is the last problem addressed.

The architecture of a pilot wave theory is most easily grasped 
in the opposite order. First, one settles on the local beables of the 
theory. There are many options here. Given the local beables, it is 
already clear how the theory will generate predictions about the 
behavior of macroscopic objects in space- time: that will be deter-
mined by the collective behavior of the microscopic beables. This 
leaves consideration of the quantum state, and the wavefunc-
tion that represents it, as the last point of business. What effect 
or influence does the quantum state have on the local beables? 
Pursuing the questions in this order leaves the collapse of the 
wavefunction, as it occurs in the quantum recipe, as the very last 
thing to be explained.

As with collapse theories, we will focus on the nonrelativistic 
domain. Ultimately, of course, the nonrelativistic theory is not 
empirically accurate, both because relativity itself must be taken 
into account and because specific observable phenomena— such 
as particle creation and annihilation— are treated by relativistic 
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quantum field theory rather than nonrelativistic quantum me-
chanics. But our first aim here is conceptual: How could one, in 
principle, go about constructing a precise physical theory capable 
of accounting for the characteristically quantum- mechanical phe-
nomena in our eight experiments? Nonrelativistic quantum me-
chanics has an impressive roster of situations in which it makes 
extremely accurate predictions. Our programmatic assumption 
is that a theory that can reproduce those predictions provides 
a model of how a precise quantum theory can be constructed. 
Those basic structural ideas will have to be employed somewhat 
differently when dealing with relativistic quantum field theory. 
But the hope is that the general strategy of theory construction 
gleaned from the nonrelativistic context can be implemented.

This hope might be in vain. It is possible that only in the con-
text of a relativistic treatment— or only in the context of account-
ing for particle creation and annihilation and other field- theoretic 
phenomena— do the critical physical principles arise. If so, our 
focus on the simpler case is leading us astray. But the advantage 
of starting with the simpler context is clear: The physics is more 
tractable and easier to grasp, and it has been worked out in great 
detail. With full cognizance of the assumptions we are making, 
let us press ahead.

The simplest and most familiar version of pilot wave theory has 
a very long history, going back nearly as far in time as quantum 
theory itself. It was presented by Louis de Broglie at the 1927 Sol-
vay conference. The theory was not well received, and de Broglie 
soon stopped developing and defending it. It was rediscovered 
and amplified by David Bohm in 1952 and is therefore also some-
times called “Bohmian mechanics.” Bohm presented the theory 
using Newtonian dynamics, supplemented with a so- called quan-
tum potential derived from the wavefunction.1 But a clearer and 
mathematically simpler presentation uses the guidance equation. 
This is how we will present it.

We begin not with the wavefunction or the quantum state it 
represents, but with the local beables. This is a theory of particles. 

1 See Bohm (1952).
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The particles have definite positions at all times, and their posi-
tions evolve continuously in space. In the nonrelativistic theory, 
the particle number is fixed: Particles are neither created nor de-
stroyed. They just move around, changing their configuration.

Since we start with particles in a familiar low- dimensional 
nonrelativistic space- time (that is, a space- time with a unique ab-
solute time), defining the configuration of the system at a given 
time presents few difficulties, as we discussed in Chapter 2. Given 
the means to mathematically specify any configuration of the sys-
tem, we can define configuration space as a mathematical space, 
each point of which uniquely represents a different possible con-
figuration of the system, and which contains representations of all 
possible configurations. Configuration space is an abstract math-
ematical space, not a physical space.

It worthwhile to repeat here something mentioned in foot-
note 3 in Chapter 2: The mathematical structure of the configu-
ration space of N distinguishable particles differs from that of N 
indistinguishable particles. A configuration of N distinguishable 
particles in a three- dimensional space is standardly represented 
by a point in R3N (i.e., by an ordered 3N- tuple of real numbers). 
Each successive triple of real numbers represents the position 
of one particular particle, with the numbers depending on how 
coordinates have been introduced into the space. Swapping the 
positions of two of the particles yields a different configuration, 
because the particles are distinguishable.

But if the N particles are indistinguishable, then switching par-
ticles does not yield a different configuration. The configuration 
of N indistinguishable particles in a three- dimensional space is 
just a set of N points taken from the space (assuming the particles 
cannot co- locate). The space of all sets of N points in, say, three- 
dimensional Euclidean space E3 can be denoted by NE3. More 
generally, the N- identical- particle configuration space of a coor-
dinatized three- dimensional space can be symbolized as NR3. This 
difference in mathematical representation of the configuration 
spaces of distinguishable and indistinguishable particles gener-
ates differences in the rest of the mathematical apparatus. These 
differences deserve some attention.



Chapter 5

140

The physical question is exactly how these particles move 
according to the theory. So far, we have not mentioned any 
wavefunction or quantum state at all. All we have postulated as 
physical items are particles in a familiar four- dimensional clas-
sical space- time, whose motion is represented by the motion of 
a single point in the corresponding abstract 3N- dimensional 
configuration space. But that abstract space is precisely the 
mathematical structure that is used to define the wavefunction 
of our system! The wavefunction assigns a complex number 
(or a complex spinor) to every point in this abstract space. The 
second ontological posit of our theory is a real, physically ob-
jective quantum state, which is represented (somehow) by this 
wavefunction.

How are we going to make use of the quantum state in specify-
ing the dynamics of our particles? We want it to determine how 
the particles move, which is the same as determining how the 
configuration of particles changes. The changing configuration 
is represented by the motion of a single point in configuration 
space. So if we can mathematically specify how that point moves, 
we can represent how the configuration changes and hence how 
the particles move. Furthermore, if the particles move continu-
ously and smoothly in the space, then the representative point 
will move continuously and smoothly in the configuration space. 
So to represent how the system of particles will behave, we want 
to specify how any given possible configuration of particles will 
change, which means specifying how any single point in the 
mathematical space will move, given where it is now. In short, 
what we want mathematically is a velocity field on configuration 
space. Such a velocity field associates a velocity with each point 
in configuration space, and that velocity determines how the par-
ticles in such a configuration would move.

From a purely mathematical standpoint, then, our problem is 
this: Given a wavefunction on configuration space, define a ve-
locity field on configuration space. If we have that, then given an 
initial configuration and initial wavefunction (and given some 
dynamics for the wavefunction), everything is determined. These 
initial data fix a unique evolution of the system in time.
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Leaving the spinors aside for the moment, the wavefunction is 
a scalar field on the configuration space: It assigns a single com-
plex number to each point. And a velocity field is a vector field: It 
assigns a vector with a direction and magnitude to each point. So 
our mathematical question is: What is an obvious way to derive a 
vector field from a scalar field? The simplest mathematical answer 
is to take the gradient.

The gradient of a scalar field is a vector field that indicates how 
the value of the scalar is changing. Consider a familiar real num-
ber field— like a measure of the height of a hill at every point. The 
gradient at a point is an arrow pointing in the direction of steep-
est ascent from there, with the length of the arrow representing 
the slope (Figure 23).

Mathematically, the gradient is represented by the symbol . 
Furthermore, we know we want any two wavefunctions that dif-
fer by a constant factor to represent the same quantum state, and 
hence to yield the same motion. A simple way to achieve this is 
to divide through by the wavefunction : Multiplication in the 
numerator and denominator cancel out any constant factor. Since 
the wavefunction is a complex scalar field rather than a real scalar 

Figure 23
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field, the result so far can be complex, but one way to deal with 
that is just to use the real or the imaginary part of the result. We 
choose the imaginary part. This approach yields (with some con-
stants put in) this guidance equation:
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In this equation, qk represents the position of the kth particle, 
so the left- hand side represents its velocity. The right- hand side, 
apart from the reduced Planck’s constant ℏ and the mass of the 
particle mk, is just the imaginary part of the gradient of the wave-
function for the kth particle coordinates divided by the wave-
function. All wavefunctions belonging to the same ray in Hilbert 
space generate the same vector field, and so they are naturally 
understood as representing the same quantum state.

Our total theory, at this point, has the following structure. 
There is a classical space- time, with three spatial dimensions. The 
local beables in this space- time are N particles, which always have 
definite positions and move around. Each particle is character-
ized by a mass mk. There is a single nonlocal beable, the quantum 
state, which is represented by the wavefunction .

All we need to complete the theory is a dynamics for the wave-
function (and hence the quantum state). We postulate that the 
dynamics of the wavefunction is always described by Schröding-
er’s equation, which requires specification of a Hamiltonian op-
erator HX:
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The wavefunction never collapses in this theory. If the potential 
term in the Hamiltonian requires it, the particles can also be char-
acterized by physical quantities, such as electric charge or “color.”

Since both Schrödinger’s equation and the guidance equation 
are deterministic, the complete initial conditions for the physical 
world in this theory (i.e., an initial wavefunction and an initial 
configuration of particles) determine a unique evolution. There 
are no dynamical probabilities.
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This dynamics is fundamentally unlike Newtonian mechanics. 
Newtonian mechanics is second- order in time; that is, the funda-
mental dynamical equation F = mA specifies the accelerations 
of objects rather than their velocities. The initial conditions for a 
Newtonian problem are therefore the initial positions and initial 
velocities of all particles. In a certain sense, in Bohmian mechan-
ics, the initial wavefunction replaces the initial velocities in New-
ton’s theory. Via the guidance equation, the initial wavefunction 
determines the velocity at that time, just as it does at all times.

One might well wonder how the probabilistic predictions 
of the quantum recipe could possibly be consequences of this 
theory. Indeed, one might wonder how this theory relates to our 
experiments at all. But one thing is clear. What has just been spec-
ified is a theory of something.2 Given an initial wavefunction and 
configuration, the particles will move in some definite way. What 
will that motion look like?

Figures 24a and 24b show different possible trajectories for an 
electron in the Single Slit and Double Slit experiments. We are as-
suming both the initial wavefunction and the Hamiltonian used 
standardly for these experiments. Since there is only a single par-
ticle being analyzed here (nothing else of note is moving in a sig-
nificant way), the initial configuration is just the initial location of 
the electron. The initial position of a particle determines where it 
will intersect the screen, as shown by the trajectories.

How does one get from these trajectories to the predictions of 
the quantum recipe? Those predictions are statistical. They state 
what proportion of marks or flashes in different locations are 
likely to accumulate if the experiment is run many times. But un-
like the GRW theory, where the initial state is just the wavefunc-
tion (and therefore the initial state is the same in all the runs), in 
Bohmian mechanics, the initial state comprises both the wave-
function and the initial particle location. Even if two experiments 
start with the same initial quantum state, they can have differ-
ent outcomes due to different initial configurations. And we can 
only derive statistical predictions about the distribution of these 

2 Credit goes to Shelly Goldstein for this formulation.
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outcomes given a statistical hypothesis about the distribution of 
the initial locations.

For these particular experiments, the relevant statistical hy-
pothesis is clear: Over many runs, the initial locations of the elec-
trons are fairly evenly distributed over space in the beam before 
they reach the slits. Given such an initial distribution, we would 
predict, for example, that about the same number of electrons will 
go through each slit. We also predict that the number of parti-
cles in the Double Slit experiment that end up at a given part of 
the screen is roughly proportional to the initial region of space 
occupied by trajectories that reach that part. Given this assump-
tion about the initial uniform distribution of electrons, it is now a 
purely mathematical fact that as more and more experiments are 
done, the number of electrons reaching any given region of the screen 
is proportional to the squared amplitude of the wavefunction at the 
screen. This fact counts as an explanation of the observed phenom-
ena provided that 1) the hypothesis about the initial distribution 
is correct, and 2) the distribution of marks or flashes at the screen 
reflects the distribution of electrons that reach the screen.

In this particular case, the hypothesis about the initial distribu-
tion of particles is quite plausible on its own, just from the overall 
symmetries of the situation. Since the source is symmetrically re-
lated to the slits, there is no physical cause for more particles to 

Figure 24

                  
(a) (b)
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arrive at one rather than the other slit in the long run. We can also 
check directly that the intensity of the beam before it reaches the 
slits is constant through the beam. Similarly, in the Double Slit 
case, we can trace the location of each interference band back to a 
“channel” that leads to it. Our only assumption is that the number 
of electrons entering each channel is proportional to the initial 
channel width. For that assumption to fail, there would have to 
be some physical influence accounting for a correlation between 
where the electrons start out and where the slits are located. The 
only assumption needed here to derive the predictions is the ab-
sence of any such correlation.

The form of the guidance equation guarantees a mathemati-
cally crucial property of the Bohmian trajectories, a property that 
helps explain the probabilistic consequences of the theory. We al-
ready know that the absolute square of the wavefunction yields a 
probability measure over configuration space (i.e., a non- negative 
measure whose integral is normalized to 1). As the wavefunction 
evolves in time, its absolute square evolves as well, yielding a prob-
ability current. One can think of the probability measure as flow-
ing around in configuration space like an incompressible fluid. 
The trajectories for different actual configurations, as specified 
by the guidance equation, follow this probability current. Where 
the squared amplitude of the wavefunction tends to pile up in 
configuration space, the Bohmian trajectories tend to congregate 
as well and to exactly the same degree. We see this in Figure 24: 
Relatively more Bohmian trajectories end at exactly the points on 
the screen where the squared amplitude of the wavefunction is 
large, and few end where the squared amplitude is low.

As for justifying the claim that the observed marks will be lo-
cated where the particles reach the screen, that calls for a com-
plete physical account of the electron/screen interaction. It is via 
this account that Bohmian mechanics addresses the measure-
ment problem. To get a handle on this account, we need to start 
thinking about interactions between particles. The Double Slit 
with Monitoring is our simplest example of such an interaction.

We described the set- up of that experiment as adding a proton 
in a chamber between the slits (see chapter 1). The idea is that if 
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the electron goes through the upper slit, the proton will move 
upward; if it goes through the lower slit, the proton will move 
downward. How do we get such an interaction between the par-
ticles into the physics?

The only place available is in the potential term of the Hamilto-
nian. If there is no interaction potential and the initial wavefunc-
tion of the electron is not entangled with that of the proton, then 
the wavefunction will never become entangled. In such a case, 
the location of one particle will provide no information about the 
trajectory of the other: There is no monitoring. But with the right 
sort of interparticle potential, the wavefunction will become en-
tangled, and the motions of the particles will become correlated. 
We can use the standard electrostatic potential energy from clas-
sical physics as a simple (indeed, slightly oversimplified) example.

The classical electrostatic potential energy is

| | ,r
KQq

U =

Where Q is the charge on one particle, q the charge of the other, 
K is a constant, and r the vector representing the spatial separa-
tion between the particles. We can write the electric potential en-
ergy as U | |x x

q qK

e p

e p= − , where xe represents the spatial coordinate(s) of 
the electron, and xp the spatial coordinate(s) of the proton. We 
turn this classical expression into an operator by “putting on the 
hats,” that is, replacing the classical position variable with a wave-
function operator. In addition to this interaction potential energy, 
there are terms in the Hamiltonian corresponding to the classical 
kinetic energy of the particles, yielding the total Hamiltonian:
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The effect of the interaction term is to entangle the initially 

unentangled electron and proton wavefunctions. The guid-
ance equation applied to this entangled wavefunction yields the 
configuration- space trajectories, two views of which are shown 
in Figure 25. Note that when the electron goes through the upper 
slit, the proton moves up, and when it goes through the lower slit, 
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the proton moves down. In this circumstance, the wavefunction 
decoheres: The trajectory of an electron that goes through one slit 
is thereafter unaffected by the part of the wavefunction associated 
with the other slit, since the proton position causes these parts 
of the wavefunction to separate in configuration space. Assum-
ing that the actual marks on the screen form where the electrons 
meet it and that the initial distribution of electrons (over many 
runs) is uniform in space, the theory predicts exactly what the 
quantum recipe predicts.

Decoherence already explains why there can be an “effec-
tive” collapse of the wavefunction in this theory, even though 
the wavefunction never actually collapses. The dynamics of the 
theory as represented in configuration space is local. That is, the 
change in the actual configuration of the particles is determined 
entirely by the value of the wavefunction near the corresponding 
point in configuration space (which determines the gradient). So 
any part of the wavefunction far from the actual configuration 
will have no immediate effect on how the particles behave. If such 
a part never evolves in the future to reach the region of configura-
tion space where the actual configuration is, then that part can 
be ignored or thrown away without empirical consequence. The 
“collapse of the wavefunction” does just that.

We can also now see how to ensure that the marks on the 
screen will form (according to the theory) where the particle ar-
rives. For the state of the screen to reflect the arrival location of 

Figure 25
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the electrons, there must be an interaction between the two. And 
if that interaction is short range (like the one discussed above, 
which is proportional to x x

1
e p-  and so gets small as the distance 

between the interacting particles gets large), then the only par-
ticles in the screen whose positions will be changed by interaction 
with the electron are particles in the screen near the electron. We 
can therefore see how changes in the configuration of particles 
in the screen will only occur where the electrons arrive. Just as 
the proton position can contain information about which slit the 
electron went through, the configuration of particles in the screen 
can contain information about where the electrons from the cath-
ode ray tube arrive.

What about spin? One might think that just as one postulates 
an exact position for each particle at all times, so one should pos-
tulate an exact direction of spin, which evolves through time. But 
such a direction is never directly observable: What we record, 
using a Stern- Gerlach apparatus, is where the particle arrives on 
the screen. So what we really need is for the spin state, as repre-
sented in the wavefunction, to make a difference in how things 
move. To do that, the spin state has to somehow play a role in the 
guidance equation. There is a mathematically simple way to make 
the spin state affect where the particles go. Modify the guidance 
equation as follows:

*( , ) ( , )
( , ) ( , )

,
*

Imdt
dq

m x t x t
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where *(x, t) is the complex conjugate of (x, t).
On the surface, it looks like we have just multiplied the nu-

merator and denominator by the same thing, which would have 
no effect at all. And for a wavefunction without spin, that is just 
what happens. But the situation is different with spinors. Recall 
that to get a velocity field, we want to take the gradient of a scalar 
function. Since spinors are not scalars, it is not immediately clear 
how to accommodate the spin variables in the guidance equa-
tion. But even though a spinor such as [ ]b

a  is not a scalar, [ ]*
b
a  is the 

same as [a* b*], so [ ] [ ] [ ] *[ * *] *a b a c b d*
b
a

d
c

d
c ## = = + , which is just 

a scalar (complex number). So this simple change has the effect of 
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making the guidance equation apply to spinor wavefunctions just 
as well as it does to scalar wavefunctions.

In the Stern- Gerlach situation, the electromagnetic interac-
tion added to the Hamiltonian creates entanglement between the 
spinoral degrees of freedom in the wavefunction and the spatial 
degrees of freedom. Given the guidance equation, this entangle-
ment influences the particle trajectories. And again, as a purely 
mathematical consequence, the proportion of particles deflected 
up or down in this situation will match the predictions of the 
quantum recipe, assuming only that the initial distribution of the 
particles over many runs is approximately the squared amplitude 
of the initial wavefunction.

More detailed discussion of what the Bohmian trajectories 
look like in this case and in examples of “quantum tunneling” 
and scattering can be found in Chapter 7 of Albert (1992) and in 
Norsen (2013), respectively. As the diagram of trajectories in the 
two- slit experiment shows, every clearly stated question about 
how the particles come to have the locations they do has a clear 
and unique answer in this theory.

Earlier in this chapter, we made a sharp distinction between 
the configuration space of a set of N distinguishable particles in a 
three- dimensional space and that of a set of N indistinguishable 
particles. The first is represented by R3N, and the second by NR3. 
We can now understand what ramifications this has.

If the particles are indistinguishable and we represent the 
quantum state by a field on NR3, then every set of N points taken 
from the space will evolve in a deterministic way encapsulated by 
the guidance equation. But if for mathematical convenience and 
simplicity, one prefers to work with a function on R3N, that can 
be arranged. One just has to make sure that the evolution of the 
system with “permuted” particles is always the permutation of the 
original evolution. Since nothing yet prevents the wavefunction 
from having a completely different gradient in one configuration 
than it has in the permuted configuration, not every mathemati-
cally possible wavefunction is permissible as a representative of 
a quantum state. And the precise restriction that makes every-
thing work out consistently is that the wavefunction on R3N must 
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be either symmetric or antisymmetric under exchange of indis-
tinguishable particles. So this constraint on the wave functions of 
indistinguishable particles, which is simply postulated in stan-
dard quantum mechanics, falls out as a theorem in Bohmian 
mechanics.

Bohmian mechanics recovers all the predictions of the quan-
tum recipe, including violations of Bell’s inequality. It therefore 
must have some nonlocality built in. The nonlocality does not 
manifest itself in any single- particle experiment, for in such a 
case, the quantum state can be regarded as a localized field on 
space that locally guides the particle trajectory. It is only when 
multiple particles are involved and the quantum state cannot be 
understood as a local field on space that the nonlocality of the 
theory becomes manifest. To better understand this, we need to 
think more clearly about how the theory applies to subsystems of 
larger systems.

The universal quanTum sTaTe and The wavefuncTion  
of a subsysTem

Ultimately, the entire physical universe is one large interacting 
entity. But as a practical matter, we can never treat it as such. In 
everyday life and in laboratory practice, we treat subsystems of 
the universe as essentially independent of the rest of the universe. 
Since this is clearly an effective way of proceeding, physics should 
explain its effectiveness. How does it do so?

In a physical theory that postulates only local beables with local 
dynamics, the situation is clear. In such a theory, one can specify 
a subsystem of the universe simply by indicating a region of space 
(or space- time). Since all beables of the theory are local, the en-
tire physical state of the region is determined by the local beables 
in the region. And if the dynamics only allows for “local action” 
(meaning that changes in the physical state are governed by dif-
ferential equations in space and time), then any influence on the 
system from outside it must come through one of the boundar-
ies. By isolating the system from the environment and not letting 
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anything across the boundary, one gets a closed system that obeys 
the fundamental physical laws. If such complete isolation is not 
possible, still the outside influences can be accounted for by mod-
eling effects across the boundary.

In a letter to Max Born, Einstein forcefully articulated a vision 
of physics committed to accepting only local beables and only 
local physical laws:

If one asks what, irrespective of quantum mechanics, is 
characteristic of the world of ideas of physics, one is first 
of all struck by the following: the concepts of physics relate 
to a real outside world, that is, ideas are established relat-
ing to things such as bodies, fields, etc., which claim “real 
existence” that is independent of the perceiving subject— 
ideas which, on the other hand, have been brought into 
as secure a relationship as possible with the sense data. It 
is further characteristic of these physical objects that they 
are thought of as arranged in a space- time continuum. An 
essential aspect of this arrangement of things in physics is 
that they lay claim, at a certain time, to an existence inde-
pendent of one another, provided these objects “are situ-
ated in different parts of space.” . . . This principle has been 
carried to extremes in the field theory by localizing the el-
ementary objects on which it is based and which exist in-
dependently of each other, as well as the elementary laws 
which have been postulated for it, in the infinitely small 
(four- dimensional) elements of space.3

Einstein’s comment about the laws themselves being postu-
lated for the small patches of space- time refers to the dynamics 
of classical field theory being local in the sense mentioned above.

This way of treating subsystems fails if irreducibly nonlocal 
beables exist or the laws are not local. If there are both local and 
nonlocal fundamental beables, then one can still indicate a re-
gion of space- time, but it is no longer clear what is meant by “the 
physical state of the system” in that region. And if the laws allow 

3 Einstein quoted in Born (1971), pp. 170−71.
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for “action at a distance,” so that events in one region can influ-
ence the physics in distant regions without a continuous chain 
of physical changes between them, then there will be no autono-
mous physical dynamics of the subsystem. Einstein thought that 
physics simply could not be done in such a situation, but as we 
will see, quantum mechanics itself proves him wrong.

Since we have some local beables— the particles— in the pilot 
wave picture, we at least have somewhere to begin. If we try to 
indicate a subsystem of the universe by indicating a space- time 
region, there is a definite fact about which particles are in that 
region. Or, even more directly, we might indicate a subsystem by 
picking out a particular set of particles, wherever they might hap-
pen to be. The “state of the system” will be clear to this extent: The 
subset of particles will have its own determinate configuration, 
fixed by where the particles are.

But to employ quantum theory, one needs more than that. 
One also needs a quantum state for the subsystem. And while it is 
easy to specify what the local beables of the subsystem are— given 
the totality of local beables and a characterization of the subsys-
tem— it is not at all clear what the quantum state or the wavefunc-
tion of the subsystem should be, even given the wavefunction or 
quantum state of the entire universe. The complete collection of 
local beables divides simply into various “parts”— the subsets— 
but the universal quantum state has no spatial parts (or, indeed, 
any obvious division into parts at all).

One case where it does is when it is a product state. Suppose 
there are 100 particles, so the quantum state is defined on the con-
figuration space (q1, q2, . . . , q100), where the qs are the positions of 
the indicated particles.4 It might happen that the universal wave-
function (q1, q2, . . . , q100) can at a certain time be factored into 
the product of two wavefunctions:

(q1, q2, . . . , q100) = (q1, q2, . . . , q25) ξ(q26, . . . , q100),

4 Each individual q would be represented by a trio of real numbers, e.g., xq1, 
yq1, zq1.
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for example. In such a case, one could attribute the wavefunction 
(q1, q2, . . . , q25) to the subsystem consisting of the first 25 particles 
and the wavefunction ξ(q26, . . . , q100) to the subsystem consisting 
of the rest. And so long as the total wavefunction remains in an 
unentangled product state of this sort between the subsystems, 
each subsystem will obey exactly the laws of the theory relative 
to its own wavefunction. That is, the particle configuration of the 
first subsystem will evolve in accord with the guidance equation 
applied to (q1, q2, . . . , q25), and the particle configuration of the 
second subsystem will evolve in accord with the guidance equa-
tion applied to ξ(q26, . . . , q100).

Although this is interesting, it is of very limited value. Since 
the wavefunction in this theory never collapses, systems get more 
and more entangled. Even if two systems start out in a prod-
uct state, interactions can easily entangle their wave functions. 
What then?

The pilot wave theory (but not theories that lack particles with 
definite locations in their ontologies) has further resources here. 
Let’s review both what we have and what we want.

At a fundamental physical level, what we have is a universal 
quantum state represented by the wavefunction (q1, q2, . . . , q100) 
and a set of 100 particles, each of which always has a precise actual 
location in space. The qi used in the wavefunction are variables 
that take particular locations as values. We will represent the ac-
tual locations of the particles with capital letters: Q1, Q2, . . . , Q100. 
This, at any given time, is what we have to work with. And what 
we want is some sort of wavefunction defined just for the subsys-
tem comprising (say) the first 25 particles. So abstractly, what we 
want is a scalar or spinor function of the form (q1, q2, . . . , q25). 
The question is: Given what we have to work with, is there any 
obvious way to get what we want?

Indeed there is! Since the particles all have actual locations at 
any given time, the obvious thing to do to get rid of a variable in 
the universal wavefunction is to plug in the actual location of the 
corresponding particle. That is, from what we have to work with 
we can define the conditional wavefunction of our subsystem as 
follows:
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cond(q1, q2, . . . , q25) =df (q1, q2, . . . , q25, Q26, Q27, . . . , Q100).

The conditional wavefunction is a well- defined mathematical 
object constructed from the mathematical representation of the 
universal quantum state (i.e., the universal wavefunction) and the 
mathematical representation of the actual positions of the par-
ticles not in the subsystem of interest. We can call these other 
particles “the environment” of the subsystem.

From an ontological point of view, then, the conditional wave-
function does not postulate anything new. The fundamental 
ontology of the theory still is completely specified by just the uni-
versal quantum state, the space- time structure, and the particles 
(which always have actual locations in space- time). In one sense 
of that multiply ambiguous term, the conditional wavefunction 
“emerges” from the fundamental ontology. The interesting ques-
tion for us now is exactly how the conditional wavefunction, as a 
mathematical object, behaves.

The time evolution of the conditional wavefunction is a com-
plicated business. That is because the ingredients from which it 
is constructed— the universal wavefunction and the locations 
of particles in the environment— each have their own time evo-
lution. The universal wavefunction is always governed by the 
Schrödinger equation: It never collapses. And the particles in the 
environment always move in accordance with the guidance equa-
tion (which governs the complete configuration of particles). So 
the fundamental dynamical equations of the theory determine 
(given a particular universal quantum state and a particular uni-
versal configuration) what the conditional wavefunction does. 
Let’s consider several contrasting cases.

First, consider the Double Slit with Monitoring, assuming that 
the initial universal wavefunction (in this case, just the wavefunc-
tion of the electron and the proton) is a product state. As we have 
seen, this product state becomes an entangled state via the inter-
action potential, and the universal wavefunction after the elec-
tron has passed through the slits is the entangled state

( ) ( , , ) ( , , ) ( , , )., ,x x y z x y z x y zy z
2

1
2

1
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But in Bohmian mechanics (unlike, e.g., GRW theory) the 
proton at that time is either actually in the upper part of the cav-
ity or actually in the lower part. If it happens to be in the upper 
part, then the conditional wavefunction of the electron, which we 
get by plugging the actual position of the proton into this univer-
sal wavefunction, is just upper(xe, ye, ze), and if the proton happens 
to be in the lower part of the cavity then the conditional wave-
function of the electron is just lower(xe, ye, ze). (Why is this? Since 
ξup(xp, yp, zp) represents a proton definitely in the upper part of 
the chamber, it is essentially zero for locations outside the upper 
part. So if we plug in a location in the lower part, this term be-
comes essentially zero, annihilating the first term of the universal 
wavefunction.)

For example, if the proton actually moves upward in our ex-
periment, then the conditional wavefunction of the electron is es-
sentially the wavefunction on the plane picked out by the proton 
position. Figure 26 illustrates that the conditional wavefunction 
for the electron in this case is just the single- slit wavefunction for 
the upper slit.

Even though the universal wavefunction never collapses, the 
conditional wavefunction of a subsystem can collapse when the 
subsystem becomes entangled with the environment in the right 
way. Indeed, this is precisely the sort of entanglement required if 
the particle positions in the environment are to provide reliable 
information about the particle positions in the subsystem (i.e., 
if the subsystem has been “measured” by interaction with the 
environment). This Bohmian collapse of the conditional wave-
function corresponds closely to the (vaguely defined) collapse of 
the wavefuncton in the quantum recipe, and also, in a different 
way, to the sharply defined GRW collapses. But unlike the GRW 
collapses, these will always occur in this experimental situation, 
even though there are only two particles involved (GRW col-
lapses will normally not occur in usual time scales with so few 
particles). And also unlike the GRW collapses, the collapse of 
the conditional wavefunction is continuous in time rather than 
abrupt. It happens quickly but at a calculable rate, since both 
the universal wavefunction and the particle positions evolve 



Chapter 5

156

continuously, and these determine the conditional wavefunction. 
And unlike the GRW collapses, these collapses depend on entan-
glement of the system and environment, and so they only occur 
in “measurement- like” situations.

We have already seen that the GRW collapses occur where the 
nonlocality of that theory manifests itself. By virtue of a GRW col-
lapse, the physical states of systems can change, and the changes 
in systems far from one another will be correlated. The collapse 
of the conditional wavefunction in Bohmian mechanics can simi-
larly illustrate the inherent nonlocality of the theory.

Just looking first at the universal wavefunction, suppose we 
prepare a pair of particles A and B in a singlet state and let them 
separate. The spin part of the singlet state is 2

1  | z - >A | z . >B -  
2

1  | z . >A | z - >B, and if we let A go far to the right and B far to the 
left, the entire wavefunction is

2
1  | z - >A | right>A | z . >B | left>B -  2

1  | z . >A | right>A | z - >B | left>B.

By the standard quantum- mechanical recipe, one predicts 
from this wavefunction an equal chance for each particle to be 

Figure 26
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deflected up or down by a z- oriented Stern- Gerlach magnet. 
Which way the deflection goes, in Bohmian mechanics, depends 
on exactly where the two particles actually are.

Suppose we send only particle A through such a magnet. By 
the usual Schrödinger evolution, the universal wavefunction is 
now

2
1  | z - >A | up- right>A | z . >B | left>B - 

2
1  | z . >A | down- right>A | z - >B | left>B.

Again the usual quantum recipe applied to this state will yield 
equal 50- 50 predictions if the z- spin of particle B is “measured,” 
although the result for B is certain to be the opposite for A. But 
let’s now calculate the conditional wavefunction for particle B, 
treating the distant particle A as part of the environment. Particle 
A has, in fact, actually been deflected up or actually been deflected 
down. If it has been deflected up, then the conditional wavefunc-
tion for B is | z . >B | left>B, and if it has been deflected down, then 
the conditional wavefunction for B is | z - >B | left>B. That is, the 
conditional wavefunction for B changes because of the experi-
mental situation and location of the distant particle A, and the 
way it changes carries information about the sort of experiment 
that was carried out on A and about the outcome. If, for example, 
instead of a z- oriented magnet, A had been passed through an x- 
oriented magnet, then the conditional wavefunction for B would 
be an x- spin eigenstate rather than a z- spin eigenstate.

Since Bohmian mechanics is a deterministic theory, we have 
no problem calculating what would happen to a system in various 
different experimental circumstances. Sharply enough specified 
counterfactual or subjunctive claims have definite truth values. 
And in an EPR or Bell sort of experimental situation, those coun-
terfactuals support behavior that anyone would call “action at a 
distance.” For example, as we have just seen, whether the result of 
a particular experiment on the left comes out a certain way can 
depend on whether a certain experiment was carried out on the 
right. The manifest nonlocality of the theory in this sense— which 
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before Bell’s results could be considered grounds for objecting to 
the theory— explains how Bell’s inequality will be violated for ex-
periments done far apart in a world governed by this physics.

David Albert provides a striking example of how experimen-
tal outcomes in Bohmian mechanics can depend on distant ex-
perimental arrangements.5 Consider again the spin version of the 
EPR experiment, where the two distant Stern- Gerlach magnets 
are perfectly aligned. Since Bohmian mechanics is a deterministic 
theory, the outcome of any particular run of the experiment— 
which will certainly give one “up” result and one “down” result— 
must be a consequence of the exact initial state of the particles 
together with the exact physical state of the experimental appara-
tus. But on which precise details of the physical situation does the 
outcome depend, and how?

One’s first thought is that these EPR correlations can be ex-
plained simply. Which electron will be deflected up and which 
down is fixed in some direct way just by the initial state of the 
electrons. But Bohmian mechanics returns the predictions of 
standard quantum theory, including violations of Bell’s inequal-
ity, so things can’t be that easy. In a Stern- Gerlach experimental 
situation with a single particle, the outcome of the experiment 
is determined by the exact initial location of the particle. Sup-
pose we prepare an x- spin up beam and pass it through a z- 
oriented magnet. Half the beam is deflected up and half down. 
Furthermore, in Bohmian mechanics, every single particle that 
is deflected up came into the device located above the midline 
of the magnet, and every single particle deflected down came in 
located below the midline. This follows from a simple fact about 
Bohmian mechanics: The trajectories in configuration space that 
describe how systems behave can never cross each other. Since 
the configuration of a single- particle system is given just by its 
position in space, that means that the possible trajectories of the 
particle through the Stern- Gerlach device cannot cross: The ones 
that eventually go upward must always be above all of those that 
eventually go downward.

5 Albert (1992), pp. 155−60.
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In the EPR situation there are two particles, and the configura-
tion space for them is six- dimensional. If both the magnets are 
oriented in the z- direction, then half the time the right- hand par-
ticle will go up and the left down, and half the time the other way 
around. But which result actually occurs cannot be fixed in the 
same way merely by the antecedent locations of the particles. It is 
possible, for example, that both particles start out situated above 
the midline of their respective magnets. But it can’t be that both 
particles are deflected upward. So what physically determines the 
outcome?

The answer, as Albert shows, is that the first particle that 
reaches its detector behaves just like the single particle discussed 
above: It exits the magnet moving upward if it enters above the 
midline and downward if it enters below. And the second particle 
displays the opposite behavior no matter where it is located. This 
corresponds to the fact that the conditional wavefunction of the 
second particle, after the first particle has passed through its de-
vice, will either be | z - > or | z . > (depending on the first outcome). 
So if in the initial state both particles start out above the midline, 
the exact experimental outcome will depend on which particle 
passes through its Stern- Gerlach magnet first. If the right- hand 
particle interacts first, the outcome will be up on the right and 
down on the left; if the left- hand particle interacts first, the result 
will be up on the left and down on the right.

We therefore can see how the outcome on one side depends, in 
a precise way, on the experimental situation far away. Given some 
initial conditions for the electrons, the electron on the right sub-
ject to a z- oriented magnet will be deflected up if no experiment 
is done on the left, deflected down if a z- oriented experiment is 
done on the left at an earlier time, deflected up if an x- oriented 
experiment is done on the left at an earlier time, and so forth. The 
nonlocality of the theory is manifest.

(We have just described how these experiments are treated in 
the nonrelativistic theory. In a nonrelativistic setting, the chance 
of the particles reaching the magnets at exactly the same time is 
essentially zero: One will always arrive before the other. But in 
a relativistic space- time, sufficiently distant experiments have no 
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definite time order, and this sort of approach cannot be straight-
forwardly adopted. This raises profound issues. But at this point 
we just want to understand the nonrelativistic theory.)

So far we have seen how the notion of a conditional wavefunc-
tion allows us to ascribe a wavefunction to a subsystem of the uni-
verse, and how that wavefunction can, at times, collapse in just the 
way the quantum recipe requires. That leaves one last question. 
In actual experimental situations, we ascribe a wavefunction to a 
subsystem and use Schrödinger’s equation to evolve the wavefunc-
tion until a “measurement” occurs. Under what conditions will 
the conditional wavefunction of a subsystem obey Schrödinger’s 
equation (rather than suffering a collapse of some sort)?

In one case, the answer here is straightforward. If the quantum 
state of the universe is a product state (q1, q2, . . . , q25) ξ(q26, . . . , q100), 
then the conditional wavefunction of the subsystem consisting of 
the first 25 particles is (q1, q2, . . . , q25), and the conditional wave-
function of the rest of the universe is ξ(q26, . . . , q100). If the universe 
starts out in such a product state and there are no inter action terms 
between the two systems in the Hamiltonian, then the universal 
wavefunction will always be a product state. Each conditional 
wavefunction will evolve by Schrödinger’s equation, with no col-
lapses. In this situation, the subsystems are unentangled with each 
other. Since any procedure we would call a “measurement” requires 
an entangling interaction between systems, we would say that the 
“environment” has not “measured” the system, and the conditional 
wavefunction of the system does not collapse.

But this straightforward case is too specialized to be of much 
use. Given the pervasive interactions among systems through the 
history of the universe, it is doubtful that the universal wavefunc-
tion is any sort of product state. Fortunately, a weaker condition 
also guarantees that the conditional wavefunction of a system will 
not suffer any collapse. Suppose that the universal wavefunction 
(q1, q2, .  .  .  , q100) is entangled but can be written as the super-
position of a product state with some other state:

(q1, q2, . . . , q100) = (q1, q2, . . . , q25) ξ(q26, . . . , q100)  
+ =(q1, q2, . . . , q100),
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where =(q1, q2, .  .  .  , q100) is “nonoverlapping” to (q1, q2, .  .  .  , 
q25) ξ(q26, . . . , q100) in the following sense: There are no points in 
configuration space where both =(q1, q2, . . . , q100) and (q1, q2, 
. . . , q25) ξ(q26, . . . , q100) are significantly greater than zero. And 
further suppose that the actual configuration of the universe— 
where the particles actually are— corresponds to a region of con-
figuration space where (q1, q2, . . . , q25) ξ(q26, . . . , q100) is nonzero 
and =(q1, q2, . . . , q100) is (nearly) zero. Then (as you can prove!) 
the conditional wavefunction of the small subsystem is (q1, q2, 
. . . , q25), and the conditional wavefunction of the environment is 
ξ(q26, . . . , q100). And as long as the two subsystems do not interact, 
each conditional wavefunction will evolve without collapsing. So 
the appropriateness of using the Schrödinger equation for the 
subsystem is again justified.

There is still one lingering issue. By the linearity of Schrödinger’s 
equation, we know that the time evolution of (q1, q2, .  .  .  , q100) 
can be recovered by adding the time evolution of (q1, q2, . . . , q25) 
ξ(q26, . . . , q100) to the time evolution of =(q1, q2, . . . , q100). But just 
because =(q1, q2, . . . , q100) is nonoverlapping with (q1, q2, . . . , q25) 
ξ(q26, .  .  .  , q100) at one moment of time, it does not follow that 
at all future times the time evolution of =(q1, q2, .  .  .  , q100) will 
be nonoverlapping with the time evolution of (q1, q2, .  .  .  , q25) 
ξ(q26, . . . , q100). And if at a later time, these two parts of the wave-
function come to overlap in configuration space, then our argu-
ment does not apply.

Let’s get a concrete sense of exactly what this means. Look back 
again at Figure 25. On account of entanglement between the elec-
tron and proton, the wavefunction divides into two pieces that are 
effectively nonzero only in very different regions of configuration 
space. One piece is the branch going up, and the other is the branch 
going down in the figure. But on any particular run of the experi-
ment, the actual configuration of the electron and proton follows a 
unique trajectory through configuration space. The lines represent 
different possible trajectories. Which trajectory occurs on a given 
run depends on the exact initial location of the particles.

Now suppose the actual trajectory in a given run is one of the 
upper lines: The electron has gone through the upper slit, and the 
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proton has moved to the top of its chamber. The lower branch of 
the universal wavefunction still exists, since the universal wave-
function never collapses. But the way that the electron and pro-
ton continue to move depends only on the local gradient of the 
wavefunction, that is, the gradient where the actual configuration 
is. So the lower branch of the wavefunction, being far away in 
configuration space from that actual configuration, has no im-
mediate influence on how the actual configuration will change. 
For all practical purposes, we can ignore the lower branch 
altogether.

But the lower branch still exists whether or not we attend to 
it, and it continues to evolve via Schrödinger’s equation. And it is 
possible that this future evolution brings that branch back to the 
region of configuration space where the configuration actually is. 
If that happens, we can no longer just ignore the existence of that 
branch, because it will have observable effects on the behavior of 
our system.

The Mach- Zehnder interferometer is a real physical example 
of exactly this sort of reunion of separated branches of the wave-
function and its observable physical effects. Since the interfer-
ometer experiment involves only one particle, the configuration 
space for the system is isomorphic to physical space, and we can 
(taking due care not to be misled) picture the wavefunction of 
the system as a field in physical space. The wavefunction always 
propagates along both paths through the interferometer. We 
know that something like this is physically necessary, since the 
behavior of every single electron on every single run is sensitive 
to the physical conditions along both paths. But the electron it-
self, in the Bohmian theory, always travels along one path or the 
other. And while it is on one path, its behavior is unaffected by the 
branch of the wavefunction associated with the other path. If, for 
example, the electron is actually on the lower path, then we can 
calculate its trajectory along that path while completely ignoring 
the existence of the other part of the wavefunction.

But once the two paths are brought back together in space, 
both branches of the wavefunction play a role in determining 
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how the electron behaves. Once the two branches come together 
in configuration space again, they will superpose and create con-
structive or destructive interference. That interference is essential 
to the prediction of the phenomena.

So it is a decent rule of thumb that once a wavefunction can be 
expressed as a superposition of wavefunctions that are effectively 
nonzero only in nonoverlapping regions of configuration space, 
one can just ignore any parts of it that are distant in configuration 
space from the actual configuration. But it is essential that this 
rule of thumb not be regarded as without exceptions. Many of 
our characteristically quantum- mechanical phenomena depend 
on the later recombination of such parts of the wavefunction and 
the resulting interference.

Under what conditions is such later interference physically dif-
ficult to achieve? The more entanglement there is, the harder it 
is to get branches of the wavefunction back together in configu-
ration space. If a system contains 1,000 entangled particles, two 
branches of the wavefunction will be far away from each other in 
configuration space if even a single particle has a very different 
location in each branch. Our intuitions about the likelihood of 
accidental later interference here— the chance of a branch of the 
wavefunction that we had written off as physically irrelevant influ-
encing the later evolution of the actual configuration— can be led 
astray by our unfamiliarity with very- high- dimensional spaces. 
Waves in a low- dimensional space (e.g., a swimming pool) can 
easily be accidentally reflected or refracted so as to interfere. But 
waves in a 1023- dimensional space, like the configuration space of 
a macroscopic body, have so many different directions to move 
in that they are highly unlikely to ever accidentally interfere once 
they have become separated. That is why quantum interference 
effects are only noticeable in systems with very few particles or 
very few relevant physical degrees of freedom. Once a lot of de-
grees of freedom are in play, later interference between currently 
distant branches is unlikely to happen without someone taking 
pains to create it. The two branches in Figure 25 will typically 
never run across each other (in configuration space) again.
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bohmian mechanics and The eighT exPerimenTs

As already stated, one really understands a proposed physical the-
ory of quantum- mechanical phenomena only if one understands 
how it yields the observed outcomes in our eight experiments. We 
have already covered most of them, but a quick review is in order.

Experiments involving only one particle as the target sys-
tem are simple. The mathematical wavefunction represents the 
quantum state of the system, which always evolves linearly and 
never collapses. The particle trajectory is determined by its ini-
tial position and the gradient of the wavefunction via the guid-
ance equation. The crests and troughs in our representation of the 
wavefunction indicate points with equal phase, and the gradient 
is directed orthogonal to these crests and troughs. The wavefunc-
tion evolves rather like a water wave, with the usual diffraction 
and interference, and the trajectories for the Single Slit and Dou-
ble Slit experiments are shown in Figure 24. The so- called wave/
particle duality is resolved in a trivial way: Both a wave and a 
particle are present. The locations of the small marks or flashes 
are determined by the locations of the impinging particles, and 
the wavelike interference and diffraction is due to the wavelike 
evolution of the quantum state.

We have discussed at length the effect of adding the monitor-
ing proton and illustrated possible trajectories in configuration 
space in Figure 26. The interference bands disappear because of 
the separation of the branches of the wavefunction in configu-
ration space. When spinors are added, entanglement of the spin 
and spatial degrees of freedom yield the most obvious trajectories 
through a Stern- Gerlach magnet: Particles that exit via the upper 
path came through the upper part, and particles that exit through 
the lower path come through the lower part. Since the wavefunc-
tion never collapses, it is still possible for parts of the quantum 
state associated with the road not taken to recombine and later 
influence the system. This possibility accounts for the interfer-
ometer results.

The EPR experiment already fully displays the nonlocality of 
the theory. Since the observed outcome on one side can depend 
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on the experimental arrangements on the other— no matter how 
far away it is— it is not surprising that Bell’s inequality can be vio-
lated. To derive the predictions, it is enough to see that if a pair of 
electrons is prepared in the singlet state and one is subjected to a 
Stern- Gerlach magnet oriented in some direction, the conditional 
wavefunction of the other will become an eigenstate of spin in the 
direction of that distant magnet. The second particle’s motion is 
determined by this conditional wavefunction in accordance with 
the guidance equation. The desired correlations between the sides 
follow, even when the magnets on the two sides are not aligned.

As compelling as these observations are, there are further gaps 
in the account to be filled in. We have argued that the pattern 
of arrival of electrons at the screen in a Double Slit experiment, 
for example, will be just the interference pattern predicted by the 
quantum recipe. But of course, we never directly observe the ar-
rival of any individual electron anywhere. To get an observable 
outcome, the electron must somehow trigger a magnifying cas-
cade of events in its vicinity, leading to a macroscopic change in 
the apparatus. A mark on film must be made, or a pointer must 
move one way or another, for example. And to explain how this 
happens in a principled way, the apparatus itself must be treated 
as a physical system governed by the same laws as the electron. 
This is what it takes to solve the measurement problem.

The prospect of completing this account may seem dim. The 
experimental equipment contains a tremendous multitude of el-
ementary particles. No one could ever know, write down, or cal-
culate with the exact wavefunction of any such system. So how 
can the measurement problem really be solved?

Fortunately, the general character of the fundamental physi-
cal laws— in particular, the linearity of Schrödinger’s equation— 
comes to the rescue. It is true that we can’t write down the 
complete wavefunction of the Stern- Gerlach magnet- plus- screen 
that constitutes a spin- measuring apparatus. But we can test a 
given apparatus to see whether it always reacts in one way when 
an electron prepared as z- spin up is fed into it and reacts in an 
observably different way when a z- spin down electron is fed in. If 
so, then we know that the wavefunction evolutions must be
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| z - >e | ready>d  | indicates up>e+d and

| z . >e | ready>d  | indicates down>e+d,

where the arrow indicates time evolution and the final state is 
a state of the electron- plus- device system. The two final states 
| indicates up>e+d and | indicates down>e+d must be confined to 
widely separated, nonoverlapping regions of configuration space, 
since the two final configurations of the apparatus differ in some 
macroscopic way.

Given these features of the apparatus and the linearity of 
Schrödinger’s equation, we know how the initial wavefunction 
| x - >e | ready>d must evolve (i.e., what happens to the wavefunc-
tion when we feed an x- spin up electron into a z- oriented Stern- 
Gerlach device). Since | x - >e is the superposition  z - >e + 2

1  z . >e, 
the final wavefunction must be

2
1  | indicates up>e+d + 

2
1  | indicates down>e+d.

And since the configurations associated with the two out-
comes differ with respect to the positions of many particles in the 
apparatus, the wavefunction ends up with two equal- sized lumps 
in two widely separated regions of configuration space.

Recall the feature of the Bohmian trajectories mentioned 
above: They follow the probability current defined by the evolu-
tion of the wavefunction. Since half of the squared amplitude of 
the initial wavefunction evolves to | indicates up>e+d and half to 
| indicates down>e+d, it follows that according to this measure, 
half of the Bohmian trajectories end up in the | indicates up>e+d 
region of configuration space and half in the |indicates down>e+d 
region. But then by this measure, half of the possible trajectories 
associated with this experimental situation yield an apparatus 
in the “indicates up” configuration and half yield an “indicates 
down” configuration. This sounds very close to the content of the 
prediction of the quantum recipe.

But if you think carefully about it, that’s not quite enough for 
what we want. After all, in any single run of our experiment, we 
never get a result that corresponds to 50% of anything. All we 
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ever get on a single run is a single result: an “indicates up” con-
figuration of the apparatus or an “indicates down” configuration. 
What we really need to explain— what counts as the successful 
empirical content of the quantum recipe— necessarily encom-
passes more than any single such experiment. What we really 
need to account for are the observed empirical frequencies: the 
fact that if we repeat the experiment many times, about half the 
time we get an “indicates up” outcome and about half the time an 
“indicates down” outcome.

How does the theory account for these empirical frequencies? 
We have seen that if we use the squared amplitude of the wavefunc-
tion as a measure over configuration space at the start of our experi-
ment, half of the possible Bohmian trajectories yield an apparatus 
in an “indicates up” state and half yield an apparatus in an “indi-
cates down” state. But suppose instead we ask: If we repeat this kind 
of experiment 1,000,000 times and measure the initial configura-
tion space for this compound experiment using the squared ampli-
tude of the initial wavefunction, what measure of the possible initial 
conditions yield a set of results in which almost 50% of the out-
comes are “indicates up” and almost 50% are “indicates down”? To 
make things exact, what is the measure of initial configurations that 
yield between 49.6% and 50.4% “indicates up” results? Any such 
result (unlike a result from a single experiment) would be taken to 
constitute evidence for the accuracy of the quantum recipe. How 
much of the initial configuration space of the system— the possible 
initial exact particle locations— leads statistics in this range?

If we measure the configuration space by the squared ampli-
tude, more than 99.999999999% of the configuration space leads 
to statistics in this range. That is, as measured by the squared am-
plitude, overwhelmingly most of the possible initial configura-
tions yield the right empirical frequencies, where by “right” we 
mean between 49.6% and 50.4% “indicates up” results. In this 
precise sense, empirical statistics in this range are typical for such 
a system, where the “measure of typicality” used is the squared 
amplitude of the universal wavefunction.

It is critical in this argument that “typical” here means that the 
measure of possible initial states leading to this sort of result is 
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very close to 1. Because the number .99999999999 is so close to 
1, we can see that the outcome remains typical in this sense, even 
if we switch to another measure over the configuration space, so 
long as the new measure is not wildly different from the old one. 
Any vaguely similar measure would give the same result: The 
right empirical statistics are typical. For example, since it can be 
proven that Born statistics are typical relative to the - squared 
measure of the initial configuration space, it is also true for “over-
whelmingly most” possible initial configurations using ||4 as the 
measure, or ||6, or ||8.

We do not get the result that Born statistics— the statis-
tics given by ||2, where  is the conditional wavefunction of a 
subsystem— are typical, because we use ||2 (where  is the ini-
tial universal wavefunction) as the measure of typicality. If using 
||4 as the measure of typicality yielded ||4 statistics as typical 
(an argument that Detlef Dürr calls “garbage in, garbage out”), 
then Born statistics could only be recovered by fine- tuning the 
measure of typicality. But that is not the situation at all. It is rather 
like this: Take the initial configuration space with an initial uni-
versal wavefunction and ask of each possible initial configuration 
whether is would yield Born statistics for subsystems. If it would, 
paint it green; if it wouldn’t, paint it red. Now if by the ||2 mea-
sure on the configuration space 99.999999999% of the points are 
green, and the whole configuration space looks essentially solid 
green, then it will still look solid green under all sorts of distor-
tions of that measure. A wall that has microscopic red specks but 
looks solid green still looks solid green if you put on distorting 
glasses that change the apparent areas of the wall. It is only by 
looking through a specifically sited and focused high- power mi-
croscope that the wall might appear to be noticably red.

The squared- amplitude measure of configuration space has 
another feature that recommends it as a good way to make sense 
of what “overwhelmingly most” of the possible configurations of 
a system means. Suppose that, at a certain moment, we want to 
quantify what proportion of the possible configurations avail-
able to a system lie in a certain region of configuration space. 
Since there will be infinitely many possible configurations in the 
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region, we need a measure to quantify the proportion. At time 
t0, the measure ascribes some such proportion to S0, the set of 
configurations in that region. For example, according to the mea-
sure, 75% of the possible configurations lie in that region. Now let 
all configurations in S0 evolve in time by means of the guidance 
equation until t1. The set S0 will evolve into a new set of configura-
tions S1. And if we use the same rule to ascribe a measure to S1 at t1, 
it had better come out to be the very same size as S0 was at t0. For 
example, if 75% of the possible configurations available at t0 were 
in S0, then 75% of the configurations available at t1 should be in S1. 
For the set of systems in S0 at t0 is just the set of systems in S1 at t1. 
All systems originally in S0 end up in S1, and no new systems are 
added. Any measure that has this formal property— the measure 
of sets of systems remains constant as they evolve under the time 
evolution— is called equivariant.

The squared- amplitude measure of configuration space is an 
equivariant measure. That is also a consequence of the trajecto-
ries following the probability current defined by the evolution of 
the wavefunction. Equivariance is a necessary condition for any 
coherent measure of “how large” a set of systems— represented by 
a region in configuration space— is.

In sum, as judged by the equivariant squared- amplitude mea-
sure, overwhelmingly most of the possible initial configurations 
will evolve to display the empirical frequencies predicted by the 
quantum recipe.6 The recipe predictions will, in this sense, be 
typical in Bohmian mechanics. If we accept this as accounting 
for the observed statistics, then Bohmian mechanics accounts for 
the phenomena predicted by standard nonrelativistic quantum 
theory. Furthermore, it does so in a way that provides a detailed 
physical account of what is going on at the microscopic scale 
in our experiments. Particles move around in accordance with 
the guidance equation, and the guidance equation employs the 

6 This brief discussion of is only the tip of a very complex mathematical dis-
cussion that would go far beyond the level of this book. Interested readers with 
strong mathematics can consult Dürr, Goldstein, and Zanghì (1992) or Dürr and 
Teufel (2009).
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wavefunction with pure (noncollapse) linear Schrödinger evolu-
tion. The “collapse” of the conditional wavefunction follows from 
this fundamental physics by analysis. There is also an effective 
collapse of the wavefunction (we can safely permanently discard 
parts of it) due to the fragmentation of the universal wavefunc-
tion into separated pieces in configuration space, as in the Double 
Slit with Monitoring experiment. Using the theory, we can even 
draw specific conclusions for particular experiments. In the Dou-
ble Slit experiment, for example, if a mark forms on the upper 
part of the screen, the electron went through the upper slit; if it 
forms on the lower part, the electron went through the lower slit 
(see again Figure 24). No similar claim is true in the GRW theory. 
In that setting, the electron no more “goes through” one slit rather 
than the other on any run, no matter what the outcome.

There is no problem accounting for measurements and their 
outcomes. Measurements are just interactions between one physi-
cal system and another, governed by the same universal laws. 
Sometimes, by virtue of the interaction, the configuration of one 
system will change in different ways, depending on the inter-
action. If this system is large enough, and the different possible 
configurations are distinct enough, we can tell by looking at which 
way the experiment came out. There is nothing magical about ex-
perimental apparatus or measuring devices: they are just physical 
systems like everything else. And if one asks what, if anything, a 
particular experiment measures, the answer is determined by pure 
physical analysis. If the observable outcome depends on some fea-
ture of the initial state of the interacting system, then the outcome 
provides information about that feature. What information it pro-
vides depends on the details of the interaction. Such questions are 
settled by using the theory to analyze the interaction.

So there is no measurement problem in Bohmian mechanics. 
Nor could there, in principle, be anything like a problem with 
Schrödinger’s cat (or any other cat). Cats are made of particles, 
according to this theory, and the particles are always in some 
exact place moving in some exact way. An evolving configuration 
of many, many particles can unproblematically correspond to 
how we think a live cat is behaving, or how a dead cat is behaving 



Pilot Wave Theories

171

(or to neither!). The supposedly problematic Schrödinger cat 
state is a state of the wavefunction or quantum state of the cat, a 
superposition of two macroscopically distinct states. According 
to Bohmian mechanics, the cat always has a quantum state, which 
never fundamentally collapses. But since the important role of the 
quantum state is to guide the motions of the particles, it doesn’t 
matter at all that it doesn’t collapse and that both branches of the 
wavefunction always exist. The branch that is far in configura-
tion space from the actual configuration of particles in the cat 
becomes irrelevant for the cat’s behavior.

In a nonrelativistic space- time, Bohmian mechanics provides 
an uncomplicated physics that accounts for all our experiments. 
There are particles that move around in accordance with a single, 
simple, deterministic law of motion. That law itself makes use of 
a quantum state of the system that always evolves by the familiar 
linear deterministic dynamics shared by all nonrelativistic quan-
tum theories. The quantum state is a physically real, nonlocal en-
tity in the theory; via its nonlocality, the motions of the particles 
get coordinated even when they are very far apart. That physical 
coordination yields violations of Bell’s inequality. This is a nonlo-
cal theory, and obviously so. But we know that we need some 
nonlocality if we are to recover what we take the phenomena to 
be: violations of Bell’s inequality for outcomes of experiments 
performed at great distances from one another.

Since the pilot wave approach is simple, has no conceptual dif-
ficulties, and recovers the content of the quantum recipe in the 
nonrelativistic setting, one might wonder why it is not at least 
discussed in physics textbooks.7 This question requires a socio-
logical answer. Some historical research relevant to answering 
that question is provided in the Further Reading section at the 
end of this chapter. But to raise this question, one must first be 
convinced that the theory does work. We have seen the outlines 
of the theory, and much more mathematical and physical detail 
can be found in the literature listed in Further Reading.

7 For a compelling expression of this question, see Bell’s “On the Impossible 
Pilot Wave” in Bell (2004), Chapter 17.
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There is still much technical work to be done on the pilot wave 
approach. It is not straightforward to adapt this sort of theory to 
a fully relativistic regime. We have already seen why: In the non-
relativistic version, sometimes the outcome of an experiment can 
depend on the time order of distant experiments. But in a rela-
tivistic space- time, no time order at all exists between sufficiently 
separated regions. So a way forward requires either a different 
sort of implementation of the basic idea or a reconsideration of 
the relativistic account of space- time structure. But the success 
of the nonrelativistic theory provides a motivation to continue 
developing pilot wave accounts.

furTher reading

Introductions to Bohmian mechanics exist at all levels of techni-
cal and mathematical sophistication. The following have already 
been cited. Chapter 17 in Bell (2004) is quite advanced. A less 
technically demanding overview is chapter 20 in Bell (2004). A 
mathematically rigorous account is Dürr and Teufel (2009). Ar-
ticles at different levels of mathematical sophistication are col-
lected in Dürr, Goldstein, and Zanghì (2013).

Many physical and philosophical questions about Bohmian 
mechanics are discussed in Cushing, Fine, and Goldstein (1996) 
and in Bricmont (2016). Both the theory and historical questions 
are treated in Cushing (1994). Many of the sociological questions 
about the treatment of the theory are addressed in Beller (1999).
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CHAPTER 6

Many Worlds

wiTh his characTerisTic  succinctness, John Bell summed up pos-
sible reactions to the problem of Schrödinger’s cat, as understood 
by Schrödinger:

He [Schrödinger] thought that she [the cat] could not be 
both dead and alive. But the wavefunction showed no such 
commitment, superposing the possibilities. Either the 
wavefunction, as given by the Schrödinger equation, is not 
everything or it is not right.1

The possibility that the wavefunction is not everything (i.e., 
that it is not informationally complete, so the wavefunction of a 
system does not determine all the physical features of the system) 
is implemented in Bohmian mechanics. The physical characteris-
tics not reflected in the wavefunction in that theory (the particle 
locations) determine the macroscopic characteristics of the cat, 
including its state of health. Given only the history of particle po-
sitions through time, one can determine whether the cat lives or 
dies, even being ignorant of the wavefunction. Given only the his-
tory of the wavefunction through time, one cannot.

The possibility that the wavefunction as given by the Schrö-
dinger equation is not right is embraced by objective collapse 
theories, such as GRW. The wavefunction in that theory is infor-
mationally complete: Knowing how the collapses occur suffices to 
determine the outcome of the experiment. But also in this case, 
the physics goes through the local beables. Since the distribution 
of matter density in the matter- density theory and the distribution 
of the flashes in the flash theory are determined by the behavior 

1 Bell (2004), p. 201.
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of the quantum state, one can recover the distribution of local be-
ables from the history of the wavefunction. The local beables then 
determine whether the cat lives or dies. In both these sorts of theo-
ries, there is an objective, physical, matter of fact about how the 
experiment comes out. At the end of the day, there is only one cat, 
which is either alive or dead.

Bell’s categorization of solutions to Schrödinger’s problem rests 
on acceptance of Schrödinger’s assumption: The cat simply either 
lives or dies. Reject that assumption, and the problem as stated 
does not arise. In 1957, Hugh Everett inaugurated a new strategy 
for understanding the quantum formalism, which has come to 
be known as the Many Worlds interpretation. Our primary char-
acterization of the general strategy can be drawn directly from 
Bell: In a Many Worlds theory, the wavefunction, as given by the 
Schrödinger equation, is both everything and right. What would 
such a physical world be like?

There are different ways to approach this question. Everett 
used interpretive principles that lead quickly to a Many Worlds 
picture, but the principles are difficult to defend. Let’s rehearse 
what we know. Consider an experimental situation containing a 
z- oriented Stern- Gerlach apparatus coupled to a detector and a 
pointer so constructed that if a flash occurs on the upper part 
of the screen, the pointer moves to point up, and if a flash oc-
curs on the lower part, the pointer moves to point down. If the 
entire physical state of the experiment is to be encoded in a wave-
function, then there must be at least one wavefunction that de-
scribes the state of the apparatus at the start of an experiment. 
Call this wavefunction |  ready>a. If we feed a | z - > electron into 
the apparatus, then the initial wavefunction of the whole system 
is | z - >e | ready>a. And if the apparatus works as advertised, al-
ways ending up in this case with the pointer pointing up, then 
the Schrödinger evolution must produce a state | points up>e + a, 
in which the pointer points up. Since we assume that the wave-
function is informationally complete, the final disposition of the 
pointer must follow from this state.

Similarly, if we feed in a | z . > electron, then | z . >e|ready>a. 
must evolve by Schrödinger evolution into | points down>e + a, 
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where the latter is a state in which the pointer points down. What 
if we feed in an | x - > electron? The answer is already determined. 
The initial state of the system is | x - >e | ready>a. But since | x - > is a 
superposition of | z - > and | z . >, we can with equal mathematical 
accuracy represent the initial state as ( 2

1  | z - >e + 2
1  | z . >e) | ready>a 

or, equivalently, 2
1  | z - >e | ready>a + 2

1  | z . >e | ready>a. The linear-
ity of the Schrödinger evolution implies that this state will evolve 
into 2

1  | points up>e + a + 2
1  | points down>e + a. Just as Bell says, 

this state shows no commitment to the pointer pointing one way 
rather than another. It is a superposition of states in which, by 
hypothesis, it points in different directions. Everett deployed his 
new interpretive principle here: If the quantum state of a system 
is a superposition of two different quantum states, then both su-
perposed states really exist. Since | points up>e + a is by hypothesis a 
state in which the pointer points up, and | points down>e + a a state 
in which the pointer points down, at the end of the experiment, 
there is both a pointer pointing up and a pointer pointing down. 
The world has split into two “branches.”

Everett’s criterion for the real existence of a branch is extremely 
liberal: If the wavefunction | > of a system is a superposition 
a | > + b | Ξ>, then the “branches” | > and | Ξ> exist, and in 
each branch, everything physically exists that would exist if that 
were the entire state of the system. By this criterion, if the wave-
function of an electron is | x - >e, then a branch containing an elec-
tron in the state | z - >e exists and a branch containing an electron 
in the state | z . >e exists. Indeed, since | x - >e is a superposition of 
up and down spin states in any direction except the x- direction, 
there would have to be branches with each of the states. Accord-
ing to Everett’s account, every possible quantum state of any sys-
tem contains infinitely many branches, since it can be expressed 
as a superposition in infinitely many ways. If one calls each such 
branch a “world,” then Everett’s theory is committed to infinitely 
many real worlds at all times, no matter what the quantum state 
of the universe happens to be.

It is hard to make sense of this account of branching, and now-
adays Many Worlds theorists do not try. They do not believe that 
just because the wavefunction can be written as a superposition 
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of states, those superposed states correspond to “real” or “actual” 
things. That criterion for the reality of a branch is too liberal. In 
its stead, modern Everettians appeal to decoherence.

David Wallace’s The Emergent Multiverse (2012) is a paradig-
matic statement of modern Everettianism. Wallace makes ex-
actly the point above about superposition not being sufficient 
for branching and invokes decoherence as the condition that 
creates a multiplicity of “worlds.”2 To say that a wavefunction 
decoheres into two (or more) other states is to say more than 
that it is a superposition of those states. It is to say, in addition, 
that the elements of the superposition do not— and will not in 
the future— interfere. The interference of two wavefunctions, in 
turn, has a clear mathematical meaning. Given the superposition 
| (x, t)> + | (x, t)>, the two component states interfere at time 
T if || (x, T)> + | (x, T)>|2  || (x, T)>|2 + || (x, T)>|2. Con-
versely, the two component states strictly decohere for position 
at T if || (x, T)> + | (x, T)>|2 = || (x, T)>|2 + || (x, T)>|2. In 
short, a superposition of two states strictly decoheres at T if the 
absolute square of the sum is the sum of the absolute squares. 
Most superpositions do not satisfy this requirement.

Consider, for example, the wavefunction at the screen in the 
Double Slit experiment. It is the superposition of two other wave-
functions: the wavefunction that would have existed if only the 
upper slit had been open and that which would have existed if 
only the lower had been open. But the absolute square of this su-
perposition is not the sum of the components absolute squares on 
account of constructive and destructive interference.

Given this definition of decoherence at a given time T, we 
can define decoherence in general: A wavefunction has deco-
hered into two branches at a time T0 if it is a superposition of 
two wavefunctions | (x, t)> and | (x, t)> such that for all t > T0, 
|| (x, T)> + | (x, T)>|2  || (x, T)>|2 + || (x, T)>|2.

While Everett’s condition for branching was too liberal, the 
decoherence condition is quite restrictive. Indeed, no superposi-
tions satisfy this requirement if we demand strict decoherence 

2 Wallace (2012), p. 62.
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at all future times. So modern Everettians do not require strict 
decoherence for branching; they require only approximate de-
coherence, as the  in the definition testifies. The reason that 
no superpositions exactly satisfy the requirement is akin to the 
problem of tails in GRW: Wavefunctions tend to spread to have 
nonzero values at all points in configuration space, even if in 
most places those values are extraordinarily close to zero. But 
if two wavefunctions are both nonzero at some point in config-
uration space, they also interfere, so the squared amplitude of 
the sum is not the sum of the squared amplitudes. If decoher-
ence is to do any work, only approximate decoherence can be 
demanded.

The requirement that the elements of a superposition not 
interfere at a specific time or in the future makes the condition 
even harder to satisfy. Consider Experiment 6, the interferom-
eter. Halfway through the experiment, the wavefunction of the 
electron is 2

1  | z - > | upper> + 2
1  | z . > | lower>, with |upper> being 

a wavefunction confined to the upper path and |lower> a wave-
function confined to the lower path. Since |upper> and |lower> 
do not overlap (to any non- negligable degree) in configuration 
space, | 2

1  | z - > | upper> + 2
1  | z . > | lower>|2 ≈  | 2

1  | z - > | upper>|2 
+ | 2

1  | z . > | lower>|2: The wavefunction approximately decoheres 
into those components at that time. But this does not persist. 
When the two beams are brought back together at the end of the 
experiment, there is interference again. The existence of both 
components is essential to the explanation of the observable out-
come of the experiment, and in this sense the two branches do 
not evolve independently of each other.

To address this issue, one refers not merely to decohering 
states but to decohering histories. A history specifies the state 
of a system at multiple times, and a set of histories decoheres if 
there are no appreciable interference terms between the histories. 
A history specifying the electron as on the lower path and then 
later as on the recombined path does not decohere from a history 
specifying the electron on the upper path and then on the recom-
bined path exactly because of interference between the two later 
states on the recombined path. But on what basis could one be 
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confident that two states not only do not interfere at a given time, 
but also will not come to interfere in the future?

The key observation solving this problem is the delicacy of 
the experimental arrangement needed to guide the two branches 
back to the same region of configuration space. If instead of a 
single electron whose wavefunction is a superposition of a part 
confined to the upper path and a part confined to the lower path 
it were a cat composed of 1024 particles, every single one of the par-
ticles would have to be meticulously guided to end up in the same 
spatial location no matter which path was taken. If even a single 
particle of those 1024 goes astray— ending up in one location via 
the lower path and another via the upper— then we have the Dou-
ble Slit with Monitoring: the interference effects disappear. And if 
the cat is constantly interacting with its environment (as it will), 
the number of entangled particles to keep track of grows. For all 
practical purposes, states like these will permanently decohere.3

Demanding decoherence of branches solves the problem of 
too many branches, but perhaps at the price of too few. Since 
exact decoherence is not to be had, all one can ask for is approxi-
mate decoherence, with little interference between branches. But 
“little” is a vague term, so on this account, the branching struc-
ture is also vague rather than exact.

The claims made here about (approximate) decoherence are 
neither controversial nor unique to Many Worlds approaches. 
As defined, the universal wavefunction under a particular linear 
dynamics either approximately decoheres or it doesn’t. The same 
approximate decoherence of the wavefunction occurs, for ex-
ample, in Bohmian mechanics. But in Bohmian mechanics, this 
does not lead to multiple worlds in the sense of multiple cats at 
the end of Schrödinger’s experiment. Bohmian cats are composed 
of particles, and the particles never split or branch or multiply: 
they simply follow one set of trajectories or another. The particle 
configuration at the end is either that of a live cat or of a dead 
cat. The characteristic flavor of the Many Worlds approach lies in 

3 Further discussion of why the dynamics of the wavefunction yields this sort 
of decoherence can be found in Wallace (2012), Chapter 3.
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its commitment to the informational completeness of the wave-
function. If the wavefunction is informationally complete and it 
splits or branches, then the physical world— including the indi-
vidual cat—  must somehow also split or branch into a live version 
and a dead version. It is this astonishing claim that the Everettians 
embrace.

The Problem of ProbabiliTy

We have the skeleton of a physical theory on the table. The theory 
is committed to a real quantum state, to universal linear evolution 
of the quantum state, and to the informational completeness of 
the wavefunction that represents the quantum state. These char-
acteristics do not yet yield a complete theory, since the question of 
other ontology— in particular, local ontology in space- time— has 
not been addressed. We have seen how a given dynamics for the 
quantum state can be supplemented with different local beables in 
our discussion of the GRW theory. In each version of that theory, 
the wavefunction is informationally complete, but the versions 
still differ over the local ontology. The same issue arises for Many 
Worlds, but we will put that question off for the moment.

One main difference between GRW and Many Worlds con-
cerns the understanding of probability in the theory. In GRW, the 
probabilities are easy to explicate: They are the probabilities for 
the quantum state to collapse in one particular way or another. 
The probabilities arise from the dynamics in a straightforward 
manner, since the dynamics itself is probabilistic. But no such un-
derstanding of probability talk is on offer for Many Worlds, since 
the dynamics of the quantum state is deterministic.

Bohmian mechanics also has a deterministic evolution of the 
quantum state, so perhaps it is the place to look for guidance 
about probabilities. But the probabilistic statements in Bohm-
ian mechanics do not concern the quantum state at all. They 
concern the actual particle trajectories. The story here is more 
subtle. Given an initial quantum state, there is a set of possible 
initial conditions for the particles. Since the complete dynamics 
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of the theory is deterministic, each possible initial condition 
implies particular outcomes for future experiments, including 
the statistics of collections of experiments. One then shows that 
for almost all initial conditions (by the relevant measure), these 
statistics will match the predictions of the quantum recipe. For 
this approach to make sense, the wavefunction cannot be com-
plete (so a nontrivial set of possible initial conditions exists, 
even given a wavefunction) and particular initial states have to 
imply determinate statistics for outcomes. Since Many Worlds 
asserts that the wavefunction is complete, it cannot take this 
route.

How, then, are we to make sense of probability in the Many 
Worlds approach? Even granting a branching structure to physi-
cal reality, how is that structure related to any notion of likeli-
hood? A concrete situation will bring the problem into focus.

Let’s consider a modification of Schrödinger’s experiment. In 
the new experiment there are two cages, each with its own dia-
bolical device containing, at the moment, no cat. A z- oriented 
Stern- Gerlach apparatus sits outside the boxes, and things are 
arranged so that an electron coming out with an upward trajec-
tory will trigger the device in Box A, while an electron coming 
out with a downward trajectory will trigger Box B. We are going 
to feed into the Stern- Gerlach apparatus an electron whose spin 
state is 3

2  | z - >e + 3
1  | z . >e. Our usual linearity arguments show 

that this state will evolve into

3
2 | z - >e | Box A triggered and Box B untriggered> + 

3
1 | z . >e | Box A untriggered and Box B triggered>.

Since the positions of so many particles differ in the triggered and 
untriggered states, the two components of this final superposition 
decohere and will remain decohered. There will be branching.

The Many Worlds theorist asserts that in one of the decohered 
branches, Box A has been triggered and Box B has not; in the 
other, Box B has been triggered and Box A has not. This outcome 
of the experiment will occur with certainty if the Many Worlds 
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account is true and can be predicted to occur with certainty by 
the experimenter, who knows how the experiment was designed.

The standard quantum recipe agrees about the time develop-
ment and decoherence of the wavefunction so long as no appeal 
to Born’s Rule is made. Of course, the sort of experimental set- up 
described would be considered a position measurement (and also 
spin measurement) of the electron, with the state of the boxes in-
dicating whether the electron was deflected up or down. But if we 
imagine denying that status to the experiment and hence blocking 
appeal to Born’s Rule, the result is that the quantum recipe would 
make no empirical predictions at all. Empirical predictions derive 
from the invocation of that rule, allowing one to ascribe probabili-
ties to each of various possible, mutually exclusive outcomes. In 
contrast, the Many Worlds theorist is committed to denying that 
there will be one of two mutually exclusive possible outcomes. 
Instead, there will, with absolute certainty, be the decoherent 
branching outcome described above. So it is not clear how Many 
Worlds can recover or vindicate Born’s Rule as it was originally 
proposed (i.e., as a way to assign likelihoods to alternatives).

Probabilities are assigned to a set of possible outcomes. If the 
set is mutually exclusive and jointly exhaustive, each outcome is 
assigned a real number between zero and one (inclusive), and 
probabilities sum to one. But in the Many Worlds theory, only 
one outcome of the experiment described above is possible: the 
branching structure given by the linear evolution of the wave-
function. So the probabilistic structure is trivial.

Some Many Worlds theorists have advocated a fallback posi-
tion. Even if it is physically certain what the outcome will be and 
furthermore, the experimenter (having accepted Many Worlds) 
knows what that certain outcome will be, nonetheless a rational 
agent will act just like someone who is uncertain about the out-
come and will assign different probabilities to different possible 
outcomes. This strategy seeks to vindicate behaving as if there 
were some uncertainty about the future, quantified by various 
probabilities, even when no such uncertainty exists.

To implement this strategy, we need to introduce an agent with 
various possible courses of action in our scenario. Imagine that 
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you are the agent, and you are forced to make a horrible choice: 
You must either put your cat Erwin into Box A or into Box B be-
fore the experiment is done. You love Erwin. You want Erwin to 
survive. What should you do?

From the perspective of GRW theory, the right choice is clear. 
The GRW dynamics assigns a 2/3 chance that the diabolical de-
vice in Box A will be triggered, a 1/3 chance that the device in Box 
B will be triggered (and no chance that both or neither will be 
triggered). So you should put Erwin in Box B and cross your fin-
gers. In the event that Box B is triggered and Erwin dies, you can 
console yourself that your choice was rational, even though it did 
not work out as you wished, and you didn’t get what you wanted. 
Similarly for Bohmian mechanics. You know that the exact initial 
state will determine which box gets triggered, and you know that 
you don’t know what that initial state is. But more possible initial 
states lead to Box A being triggered than Box B being triggered. If 
you are rational, you put Erwin in Box B and cross your fingers.

Standard decision theory says that one should calculate the 
expected utility of each possible action and choose the act with 
the greatest expected utility. The expected utility is calculated by 
weighting the value, or utility, of each possible outcome by its 
probability and summing these terms. It is easy to see that putting 
Erwin in Box B has a higher expected utility than putting him in 
Box A if we value his survival.

How should the Many Worlds theorist think about this? As 
far as the boxes go, everything is already determined. The world 
is about to “split” into two decohering branches, and Erwin will 
split as well, with a successor on each branch. Your only choice 
is which box Erwin goes in at the beginning. If you put Erwin 
in Box A, the world will branch, with one branch containing an 
Erwin- successor in A and A triggered and B untriggered (so the 
Erwin- successor will be dead) and another branch with an Erwin- 
successor in A and A untriggered and B triggered (so the Erwin- 
successor will be alive). If you put Erwin in Box B, then the world 
will branch, with one branch containing an Erwin- successor in B 
and A triggered and B untriggered (so the Erwin- successor will 
be alive) and another branch with an Erwin- successor in B and 
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A untriggered and B triggered (so the Erwin- successor will be 
dead). Your choice is a choice between bringing about the first 
outcome or bringing about the second. Which should you prefer?

Since the description of the two outcomes given above is sym-
metric substituting “A” for “B,” there might seem to be no grounds 
to prefer one choice over the other. But we have left out one physi-
cal fact: The squared amplitude of the branch in which Box A (or 
rather: the Box A- successor on that branch) is triggered is higher 
than the squared amplitude of the branch in which Box B is trig-
gered. The ratio of the measures of the squared amplitudes dis-
tinguishes the branches from each other. The question is: Why, 
as an agent, should you care about this proportional difference in 
squared amplitudes? And if you do care, should you prefer that 
the higher squared- amplitude branch contain an Erwin- successor 
in the triggered box and the lower amplitude branch contain an 
Erwin- successor in the untriggered box or the other way around?

The Many Worlds theorist would like to prove that the rational 
choice to make in this situation is the same as the rational choice 
made by an agent in a GRW world or an agent in a Bohmian 
world. But in those scenarios, the rationality of the act is tied to 
the fact that there will be only one Erwin- successor at the end 
of the experiment, and one wants that unique Erwin- successor 
(which we can just call “Erwin” without equivocation) to be alive. 
Putting Erwin in Box B maximizes the chance of succeeding, but 
it does not guarantee success. Since there will certainly be two 
Erwin- successors in the Many Worlds scenario, one alive and one 
dead, this justification for a rational choice is not available.

There is a further puzzle. As we have seen, the only possibly 
relevant difference between putting Erwin in Box A and putting 
Erwin in Box B is the relative squared amplitude of the branch 
on which the Erwin- successor lives compared to the branch on 
which the Erwin- successor dies. But exactly because of decoher-
ence, the comparative values of the squared amplitudes can make 
no difference at all to the intrinsic character of either branch. 
Once they have decohered, the branches evolve independently of 
the existence of the other branches. So the relative squared am-
plitudes of the two branches can make no practical difference to 
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anything or anyone on either branch. One what grounds, then, 
should it make any difference to the agent?

The technical challenge for the Everettian is to articulate 
some compelling “rationality principles” that imply that a ratio-
nal Everettian agent must treat the squared amplitude of future 
branches exactly as the non- Everettian using Born’s Rule (assign-
ing a probability to the unknown future outcome) would. That 
is, the squared amplitude must enter into the decision- making 
procedure just as a probability would, yielding the same set of 
decisions. The rational Everettian will, to that extent, act as if the 
squared amplitude were a probability.

Unfortunately, the general scheme— lay down principles of 
“rationality” together with the Many Worlds physics and derive 
rational decision- theoretic behavior— has been implemented in 
different ways using different rationality principles. Furthermore, 
the list of principles and the proofs tend to be complex. David 
Deutsch, the originator of the strategy, used rationality principles 
couched in terms of “measurements” (associating the measure-
ments with Hermitian operators).4 David Wallace eschews all 
mention of measurements or operators. Instead, the acts available 
to the agent are represented by different Hamiltonians, and the 
consequence of choosing an act is implemented by allowing that 
Hamiltonian to generate the future branching structure. Since 
Wallace’s approach coheres better with the physics, we will use it 
as our test case. It can provide a sense of how the general strategy 
is supposed to work and what conceptual issues it faces. But of 
necessity, our discussion is sketchy.

Let’s return to Erwin. Intuitively, faced with the choice be-
tween putting Erwin in Box A and putting him in Box B, the 
right thing to do is to put him in Box B, maximizing his chance 
of survival. (Of course, an Everettian could just deny that this 
is the right choice in an Everettian universe, and our failure to 
appreciate that stems from our unawareness that our universe 
is Everettian. But no Everettian argues this way. Oddly, the hy-
pothesis that there is a vast, heretofore unrecognized branching 

4 See Deutsch (1999).
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structure to the physical world is supposed to have no surprising 
practical consequences for everyday life.) Since the Many Worlds 
Erwin will certainly have a living successor and a dead successor 
no matter what choice is made, one can’t maximize the chance of 
survival in the normal sense. But suppose we change the physical 
set- up in the following way.

Instead of having the single electron on the up path imme-
diately trigger the boxes, we send the up beam through a Stern- 
Gerlach magnet oriented in the x- direction. The up output beam 
of this second magnet is directed at a green trigger that will set 
off the device in Box A, and the down output beam is directed 
at a distinct red trigger that will also set off the device in Box A. 
Again, you have a choice: put Erwin in Box A or put Erwin in Box 
B. How should you think about this?

The branching structure that will result from either choice is 
clear. Instead of branching into two macroscopically distinct de-
coherent worlds, there will now be three. In one, the green trigger 
has gone off in Box A; in another, the red trigger has gone off in 
Box A; and in the last, the trigger has gone off in Box B. But unlike 
our original experiment, the squared amplitudes of these three 
branches are the same. Where should you put Erwin?

The state of the universe at the end if you put Erwin in Box A 
will be

3
1 | z - >e | Box A red triggered, Box B untriggered, Erwin dead> +

3
1 | z - >e | Box A green triggered, Box B untriggered, Erwin dead> +

3
1 | z . >e | Box A untriggered, Box B triggered, Erwin alive>.

Putting Erwin in Box B will yield

3
1 | z - >e | Box A red triggered, Box B untriggered, Erwin alive> +

3
1 | z - >e | Box A green triggered, Box B untriggered, Erwin alive> +

3
1 | z . >e | Box A untriggered, Box B triggered, Erwin dead>.
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The argument now proceeds by invoking symmetry prin-
ciples and indifference principles. If all you care about is the 
health of Erwin’s successor, then whether a successor happens 
to be in Box A or Box B alone makes no difference to the value 
of an outcome, and similarly whether the red or green trigger, 
or neither, happens to be triggered. But if we ignore the box 
and trigger labeling, all six decoherent states in the two out-
comes are identical in all relevant respects, even in amplitude, 
except for whether the Erwin- successor is alive or dead. If you 
put Erwin in Box A, his successors end up dead in two of the 
three equivalent branches; if you put him in Box B, only one 
of his successors ends up dead. So by a dominance principle, 
you should prefer putting him in Box B. The end result will be 
more live Erwin-successors, where all the successors must be 
regarded as equally valuable.

By appealing to a symmetry principle and a dominance prin-
ciple, then, one can argue that putting Erwin in Box B is the ra-
tional action to take. Wallace’s proof parlays this sort of strategy 
into a general form, covering all sorts of decision situations. This 
is not a full presentation of the argument, but it gives the flavor 
of how it works.

So far we have not touched our original problem at all: how 
to make the choice in the original set- up. What we now need are 
additional indifference principles entailing that the new decision 
problem must be regarded by a rational agent as equivalent for 
all decision- theoretic purposes to the original. If we can show this, 
then the solution to the second set- up dictates the solution to the 
original.

Such indifference principles must render the “rational” agent 
indifferent to a lot of physical facts. For example, the branching 
structure in the second problem is unlike that in the original: In-
stead of branching into two decohering states, the new experi-
ment branches into three. Further, the decohering macrostates in 
the two cases are themselves different. For example, the physi-
cal set- ups of the experiments at the beginning are not the same. 
Wallace invokes two “rationality principles”— Branching Indiffer-
ence and Macrostate Indifference— which imply that no rational 
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agent should consider these differences in the experiments rel-
evant to the decision choice.5

There are other things that a “rational” Everettian agent is for-
bidden from doing. No rational agent can directly desire to create 
certain sorts of branching structures and value the existence of 
such structures more highly than the existence of either branch 
individually. Suppose, for example, you are presented with the 
choice of two delicious desserts at a three- star Michelin restau-
rant. You would like to try both, but both the cost and your pres-
ent satiation make that undesirable. You value each equally, so 
there is no rational objection to picking one, picking the other, 
or flipping a coin. These are all options for the GRW agent or the 
Bohmian agent. But the Everettian agent has yet another option: 
Send a z- up electron through an x- oriented Stern- Gerlach mag-
net, and let the choice of dessert be conditional on the outcome. 
As an Everettian, you will foresee with certainly the outcome: The 
world will evolve into two decohering branches, on one of which 
your successor eats one dessert and on the other of which your 
successor eats the other. In a sense, you will get to have your cake 
and panna cotta, too. Would it be rational to pay for the experi-
ment to be done, knowing that at least one of your successors gets 
to try each dessert?

Such a preference must be forbidden by the rationality prin-
ciples, since it inspires an action that would not be considered 
rational in traditional decision theory. In the traditional setting, 
there is no sense in which it is possible to get a “both desserts” 
result: No matter what you do, you will only eat one. Paying for 
the experiment is irrational: You pay the cost, so any free choice 
would have given an overall better outcome. So an Everettian 
who prefers to pay for the split “both/and” outcome in prefer-
ence to any “either/or” outcome will be irrational by the usual 
decision- theoretic standards. Since Wallace wants the rational 
Everettian to behave normally, this preference structure must be 
forbidden. In this case, the technical work is buried rather deeply 

5 Wallace (2012), p. 179.
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in the axioms, in the definition of what can possibly count as a 
“reward.”6 The set of possible rewards (i.e., the things assigned 
intrinsic values) must all be mutually orthogonal in Hilbert space, 
so if eating cake is a possible reward and eating panna cotta is 
possible reward, then the branching structure in which different 
things are eaten on different branches cannot be a reward, cannot 
be aimed at or valued as such. Nothing is said about why one can’t 
rationally value such an outcome. It is just built into the technical 
machinery that one can’t.7

We can now see one main conceptual issue with this decision- 
theoretic approach. Granting that the theorem is correctly 
proven, what has been shown is that an agent who satisfies some 
constraints that are given the title “rationality axioms” and who 
makes choices in a situation restricted by a set of conditions about 
what can count as a reward must make decisions that are identical 
to those an agent following standard decision theory in a setting 
of uncertainty. The latter agent is unsure about which outcome 
will occur in the future and assigns the probabilities via Born’s 
Rule. Wallace contends that getting the rational Everettian agent 
to behave the same way counts as solving half the challenge con-
fronting Many Worlds, the half he calls “the practical problem.” 
The practical problem is to show that a rational Everettian must 
act as if the squared amplitudes of future branches were prob-
abilities, in the sense of making the same decisions as a standard 
agent (i.e., an agent maximizing expected utility in a state of un-
certainty) would. But there are at least two further issues. One is 
whether the structural constraints put on the decision- theoretic 
set- up (e.g., not regarding a certain branching outcome as itself 
intrinsically valuable, being indifferent to branching structure) 

6 Wallace (2012), p. 175.
7 Wallace discusses this objection but offers a bad analogy to suggest that stan-

dard decision theory faces similar issues. He likens it to an agent who pays to have 
a decision be settled by the flip of a coin “because, say, he finds it comforting to 
have the decision taken from his hands; the reader can probably supply other mo-
tivations” (Wallace 2012, p. 194). But this is not a case of preferring that a decision 
be made a certain way but of preferring that there be a different sort of outcome 
than can occur in the classical theory.
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are really rationally compelling. The other is whether, even grant-
ing the theorem, one has gone any distance toward understanding 
how Many Worlds theory can recover the usual understanding of 
the implications of Born’s Rule.

Here is an indication that the latter issue has not been re-
solved. Consider again your choice for which box to put Erwin 
in. Standard decision theory implies that in a case of uncertainty 
about the outcome but accepting the Born’s Rule probabilities 
for the possible outcomes, a rational agent ought to put Erwin 
in Box B but also be unsure if that choice will yield the desired 
outcome. Wallace’s theorem shows that a rational Everettian 
must make the same choice. But in a GRW world or in a Bohm-
ian world, the choice of act is accompanied by foreboding: If the 
less likely event should occur, and Box B gets triggered, you will 
have failed to save Erwin. The Everettian has nothing obvious to 
be worried about. The actual branching outcome, with the vari-
ous squared- amplitude weights, is known for certain in advance. 
So the “rational Everettian” acts like an agent faced with uncer-
tainty in that she makes the same choice, but unaccompanied by 
foreboding.

If the game, then, is to show that making choices in an Everet-
tian branching multiverse should be just like choosing in a GRW 
world or a Bohmian world, that task has not been accomplished. 
The Everettian only acts like an agent assigning Born Rule prob-
abilities to exclusive alternative outcomes in one respect: the ac-
tual choice made. But the significance or meaning of the choice 
is different, and the difference should show up in one’s emotional 
state and attitudes. Again, it is not clear why the Everettian should 
even be interested in showing that accepting an Everettian multi-
verse should make no difference to how one regards one’s choices 
and their outcomes. Offhand, one might think that accepting the 
existence of Many Worlds and branching should have all sorts of 
ramifications for how one regards oneself, one’s choices (includ-
ing the range of choices), and the world as a whole. But mod-
ern Everettians have tended to eschew this idea and have gone to 
great lengths to minimize the practical effects of accepting this 
remarkable view.
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It is even contentious to assert that the Everettian agent “acts 
like” a standard agent in a situation of uncertainty. It is at least as 
correct to say that the rational Everettian agent acts like a stan-
dard agent in a condition of certainty about the outcome of vari-
ous choices, but who also values the future decohering branches 
in proportion to their squared amplitudes. Such an agent would 
prefer to put Erwin in Box B. She is sad that the Erwin- successor 
on the branch in which Box B is triggered will die, but she cares 
less about that Erwin- successor just because the squared ampli-
tude of the branch is lower than the squared amplitude of the 
branch on which the Erwin- successor lives. Standard decision 
theory operates by calculating an expected utility for each act, 
weighting the value of each outcome by its probability and sum-
ming over all possible outcomes. The same number is produced if 
one simply revalues an outcome proportional to the squared am-
plitude of each branch and sums these values on the grounds that 
all branches will be created. The decision problem is converted 
to decision- making under certainty rather than uncertainty, and 
given the revaluation of the outcomes, the agent makes the same 
choices as the uncertain agent using probabilities. But subjective 
uncertainty, and its accompanying anxiety about the outcome, 
disappear.

Hilary Greaves (2004) argues that even if an Everettian agent 
makes choices that match those of a subjectively uncertain agent, 
it is not correct to say that the Everettian is subjectively uncertain 
about anything. After all, what is there to be uncertain about? She 
knows (well enough) the present wavefunction of the lab, and she 
knows the branching structure that decoherence of the wavefunc-
tion will create. There is no physical fact not determined by the 
wavefunction, so the physical state in the future is completely 
foreseeable. At the time of the choice, the agent is not uncertain 
about which future Erwin successor is “really” Erwin: they both 
will have equal claim to that title. Nor is she uncertain about 
which of her successors will be “the real” her, for the same rea-
son. Greaves argues that these decision- theoretic arguments can 
show only that the rational Everettian must adopt a certain caring 
measure over future outcomes: The agent must care more about 
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events in high- amplitude branches and care in proportion to the 
squared amplitude.

In sum, modern Everettians have theorems that a rational Ev-
erettian agent must make choices just like a rational agent faced 
with uncertain outcomes, where the likelihood of the outcomes 
is given by Born’s Rule. But there are several problems still to be 
faced. One is that both the way the decision- theoretic situation 
has been constrained and some of the rationality principles seem 
unmotivated. The other is that even granting the theorem, it has 
not been shown that accepting the Everettian picture should not 
radically alter one’s understanding of what choosing is and what 
the consequences of one’s choices might be. In that sense, one has 
not recovered the standard Quantum Recipe.

Solving the practical problem of rational decision- making 
would not, in any case, vindicate all everyday uses of probabilistic 
concepts. Probability also plays a central role in how we evaluate 
some claims as evidence for other claims. Here is a case similar 
to one discussed by Wallace.8 Suppose that a beam of electrons is 
coming into a lab, and one knows that either the electrons are all 
spin- up in a direction 5° away from the z- direction or in a direc-
tion 10° away from the z- direction. Suppose further that the only 
instruments one has to hand are a z- oriented Stern- Gerlach mag-
net and a mechanical device that registers whether an electron 
is deflected up or down. One wants to accumulate evidence that 
will help decide between the two hypotheses about the direction 
of spin of the incoming beam.

The solution is easy. Set the beam to run through the Stern- 
Gerlach apparatus and turn the counter on. According to the 
usual application of Born’s Rule, the chance that an individual 
electron in the 5° spin state will be deflected up is cos2(2.5°) = 
0.998. The chance that an individual electron in the 10° spin state 
will be deflected up is cos2(5°) = .992. If the experiment is left 
running all night and 1,000,000 results are tallied, then the two 
hypotheses make the following probabilistic predictions. If the 
beam is spin- up in the 5° direction, there is a 99.99% chance that 

8 Wallace (2012), pp. 201ff.
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between 997,830 and 998,170 of the electrons will be recorded as 
deflected up; whereas if the beam is spin- up in the 10° direction, 
there is the same probability that between 991,660 and 992,340 of 
the electrons will be recorded as deflected up.

The next day when the data have been collected, it seems ob-
vious how to proceed. If the data show a frequency of upward 
deflections between 997,830 and 998,170, accept the 5° hypothesis 
and reject the 10°. If the data show a frequency between 991,660 
and 992,340, reject the 5° and accept the 10°. There is a chance 
that this conclusion will be wrong but 1) the chance is small, and 
2) acceptance and rejection of hypotheses in this way is known to 
be extremely reliable in cases where the correct hypothesis can be 
independently verified. The basic epistemological move here is 
an application of conditionalization using Bayes’ Theorem: If two 
alternative hypotheses ascribe different probabilities to a phe-
nomenon, then the hypothesis ascribing the higher probability 
is better confirmed by the occurrence of the phenomenon. There 
are many subtleties about the exact use and justification of this 
sort of inference, but as a historical fact, it has been remarkably 
reliable.

In cases like this, we behave and reason as if the possibilities 
that are ascribed probabilities very close to 0 do not occur and 
possibilities ascribed probabilities close to 1 do. (This character-
ization is rough and requires refinement, but it serves as a good 
first approximation.) If the relevant high- probability outcome 
occurs, the procedure outlined above selects correctly between 
the two hypotheses. And the same condition also vindicates clas-
sical decision- making recommendations if the decision is made 
repeatedly.

Why should one follow the standard decision- theoretic advice 
to maximize expected utility? After all, what we desire to maxi-
mize is not expected utility but utility. This is the source the stan-
dard agent’s foreboding discussed earlier in the chapter: Having 
made the decision about which box to put Erwin in, the agent 
knows that expected utility has been maximized, but not what 
the actual utility of the outcome will be. But if we confront the 
same decision situation over and over, making the same choice 
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each time, it becomes more and more probable that the average 
utility we receive per decision will be very close to the calculated 
expected utility. So if this high- probability outcome happens, the 
effect of following the standard advice is to maximize our long- 
term profit relative to always having made some other decision. 
This observation does not hold for individual decisions or shorter 
sequences of decisions, because the probabilities for these deci-
sions never approach 1. Individual gamblers sometimes make 
great profits and sometimes suffer great losses, but casinos regu-
larly and predictably make money. The reliable effectiveness of 
standard decision theory for casino managers can be accounted 
for by the very same fact that accounts for the effectiveness of 
the evidential inference discussed above: If the relevant very- high 
probability outcomes occur, casinos will turn a profit and scien-
tists will reach the correct conclusion.

For a collapse theorist or a pilot wave theorist, then, the practi-
cal problem of decision theory and the epistemic problem of eval-
uating evidence are linked. The same physical condition implies 
the success of both. But the same cannot be said for the Many 
Worlds theorist. Since all decohering branches actually will exist, 
the long- term profitability of a decision rule cannot be accounted 
for by the nonexistence of low- amplitude branches. And the evi-
dential problem also takes a different form. In Many Worlds, it 
is not possible for the inference made above to always or usually 
be reliable. It will be reliable on some branches and unreliable on 
other branches in every case. The branches on which it is reliable 
will have a relatively higher squared amplitude than the branches 
on which it fails. The Many World theorist therefore seeks a nor-
mative argument to the effect that we ought to form our beliefs as 
would be appropriate for the higher- amplitude branch.

In Many Worlds, the practical problem, which is oriented to 
the future, is addressed by a rule concerning how strongly we 
should value various future outcomes. Even if this advice is ac-
cepted, such a normative suggestion has no obvious bearing on 
the epistemic problem. Instead, the epistemic problem requires 
us to make inferences that are appropriate only if we are already 
on branches with relatively high squared amplitudes.
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When Wallace discusses this problem, he finesses the differ-
ence between the future- oriented problem and the past- oriented 
problem. This is done by asking not what the agent getting up the 
next morning in our spin- experiment example should infer from 
the collected data, but what the prebranching agent the night 
before should commit to doing. The prebranching agent fore-
sees having future successors on high- amplitude branches who 
make good inferences, and future successors on low- amplitude 
branches who make bad inferences. So Wallace appeals to the 
practical argument: The prebranching agent neglects the future 
branches with bad inferences, because they are low- amplitude. So 
she doesn’t care about them.9 But the postbranching agent cannot 
argue this way. That agent only cares about getting the right con-
clusion for herself. She can’t dismiss the importance of making an 
error by saying, “well, if I am the low- amplitude successor, then 
my success doesn’t really matter.”

The next morning, having recovered the data, the Many 
Worlds theorist has to decide what to infer. The collapse theo-
rist or the pilot wave theorist in the same situation can reason, 
given the physical hypothesis that the high- probability outcome 
occurred, that the data from the lab reflects which hypothesis was 
correct. But the Many Worlds theorist knows that no matter what 
results come in from the lab, those results were certain to occur 
on either hypothesis. What is sought is a normative rule that dic-
tates believing that her own branch has a relatively high squared 
amplitude rather than low one, even though the squared ampli-
tude makes no qualitative difference to the branch.

What is conceptually jarring about Everettian approaches to 
this problem is this normative flavor. These approaches attempt 
to show that various rationality principles require that an agent 
ought to adjust her beliefs in certain ways. But no matter how 
these normative matters come out, there is a non- normative 
fact to explain. These techniques for forming beliefs and making 
choices actually have worked well. This is not a normative fact 
in itself. This fact plays a role in explaining why animals using 

9 Wallace (2012), p. 202.
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certain strategies have evolved, while others died out. It is hard to 
see how normative constraints bear on this. The animals were not 
rational, and their behavior was not dictated by their appreciation 
of any norms. Even if a decision strategy violates the norms, that 
alone cannot explain why the animal failed to evolve unless one 
explains why violating the norms leads to bad consequences. But 
the normative character of the rules is irrelevant to that question.

Collapse theories and pilot wave theories can cite a physical 
characteristic of the universe that, if it obtains, accounts for the 
utility of the practical and epistemic advice. The same character-
istic would also explain why evolution has proceeded as it has. 
If certain sufficiently low- probability events do not occur, the 
advice yields good results (in the long term), and only certain 
behaviors will be successful. But no parallel physical fact about 
a Many Worlds universe can guarantee the success of the advice. 
It will always work for some and fail for others. The normative 
principles endorse strategies that work for the relatively high- 
amplitude sucessors and fail for the relatively low- amplitude 
ones. We can justify using the rules to make practical decisions 
if we decide to care more about our high- amplitude successors 
than our low- amplitude ones, but how could our decision about 
what to care about in the future have any bearing on the course of 
evolution in the past, or the historical success of inferences such 
as those about the electrons? It is hard to see how to integrate 
the normative character of these proofs with the physical facts we 
seek to explain.

The Problem of local beables and macroscoPic realiTy

In one sense, our discussion of the Many Worlds theory has mir-
rored our discussion of GRW: A dynamics for the quantum state 
is specified via a dynamical equation for the wavefunction, and 
various consequences of that dynamics are noted. In the case of 
GRW, only after that analysis did we observe that if the total on-
tology of the theory is just the quantum state, then there are no 
local beables, and it is obscure how to connect the behavior of 
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the quantum state alone to the sort of data (about the macro-
scopic situation in laboratories) that we take to report actual 
physical events. We further have seen that the GRW quantum 
state dynamics can be allied with different sorts of local beables, 
yielding different physical theories. So the time has come to ask 
the parallel question for Many Worlds. What, if anything, are 
the local beables in this theory, and how does the basic physical 
ontology of the theory connect to the sorts of facts that are ac-
cepted as data?

Just as with the GRW theory, this problem has been obscured 
by a linguistic labeling trick. For example, we have asserted that, 
by virtue of the linear dynamics, the state | x - >e | ready>a will 
evolve into 2

1  | z - >e | points up>a + 2
1  | z . >e | points down>a. And 

the way we have spoken about the quantum state suggests that 
|ready>a (which is a wavefunction and nothing else) represents 
a physical situation in which some macroscopic apparatus is in 
a “ready” state of some sort, |points up>a represents a physical 
situation in which that macroscopic apparatus has gone into one 
macroscopic indicator state, and |points down>a represents a 
physical state in which it has gone into a different indicator state. 
After all, if I call a quantum state “|points down>a,” it must surely 
be a state in which (in the usual sense) a macroscopic apparatus 
indicates a “down” outcome. But by what rights is the label justi-
fied by the structure of the physical state it labels?

When analyzing both collapse theories and the pilot wave 
theory, we solved this problem via local beables. If there are 
particles, or flashes, or a continuous matter density distributed 
through space- time, then we know how to proceed. The precise 
microscopic matter distribution in a model determines the mac-
roscopic situation by simple aggregation. Applying the theory to 
the entire laboratory situation yields empirical predictions. In 
contrast, if the theory postulates no local beables, it is not clear 
how to proceed.

One Many Worlds approach to this question is to deny that 
familiar macroscopic objects need to be composed of local mi-
croscopic parts. Instead the macroscopic objects of familiar ex-
perience and of lab reports are to be analyzed functionally as 
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patterns in the behavior of the quantum state. If the quantum 
state evolves in a certain way, it is said, a cat thereby comes into 
existence with no additional physical ontology needed. Indeed, 
the whole low- dimensional space- time itself somehow emerges 
from the behavior of the quantum state.

We have met this sort of approach before, in our discussion of 
emergence in the GRW theory. We have already seen the difficul-
ties involved in defending the view that “to be a table or a chair 
or a building or a person is— at the end of the day— to occupy a 
certain position in the causal map of the world.” 10

When expositing Many Worlds, David Wallace adopts a simi-
lar approach. Tables and chairs and people are, according to Wal-
lace, patterns. “[A] macro- object is a pattern, and the existence of 
a pattern as a real thing depends on the usefulness— in particu-
lar the explanatory power and predictive reliability— of theories 
which admit that pattern in their ontology.”11 The implicit claim 
is that the sorts of patterns that constitute tigers can be instanti-
ated in the behavior of quantum states, even if the quantum states 
themselves have no obvious relation to any familiar space- time.

Wallace does not lay out this situation bluntly. Shortly be-
fore the passage just cited, he says this: “The moral of the story 
is: there are structural facts about many microphysical systems 
which, although perfectly real and objective (try telling a deer 
that a nearby tiger is not objectively real), simply cannot be seen 
if we persist in describing those systems in purely microphysical 
language.”12 But in this passage, the point is uncontroversial. Ti-
gers are typically understood as complicated systems with a defi-
nite microscopic structure. What makes a collection of electrons, 
protons, and neutrons a tiger, rather than something else, has to 
do with how the microscopic parts are arranged, or structured. A 
significant part of that structure is the spatial arrangement of the 
microscopic parts through time. That much already determines 
the size, mobility, dental sharpness, and so forth, of the tiger. The 

10 Albert (2014), p. 217.
11 Wallace (2012), p. 50.
12 Wallace (2012), p. 50.
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task of seeing how these macroscopic features of a tiger follow 
from the structuring of its microscopic parts is conceptually clear. 
But a quantum state contains no microscopic parts localized in 
space- time, so its behavior— whatever it is— cannot create a mac-
roscopic tiger in anything like the way the behavior of localized 
electrons, neutrons, and protons can. In what sense, then, is a 
tiger the kind of pattern that could even in principle be instanti-
ated by a quantum state?

There is no standard answer in the Many Worlds literature. 
Indeed, the Many Worlds approach often takes for granted that 
“patterns” or “behaviors” or “causal structures” in the quantum 
state alone can unproblematically be familiar macroscopic ob-
jects, even though the quantum state is not a local object in a 
familiar space- time. Whatever patterns these are supposed to be, 
they are not the patterns created by the behavior of microscopic 
physical entities in space- time.

This assumption is critical for the basic argument for Many 
Worlds. We assume that some structure of a quantum state can 
constitute the physical situation we know familiarly as “appara-
tus in the ready state,” another structure can constitute the situ-
ation “apparatus indicating up,” and yet another the situation 
“apparatus indicating down.” Assuming this, it is appropriate to 
label one quantum state |ready>a, another |points up>a, and yet 
another |points down>a. But then it is hard to resist the Many 
Worlds conclusion: If the universal quantum state evolves into 

2
1  | z - >e | points up>a + 2

1  | z . >e | points down>a and the two 
branches decohere, the behavior of the squared amplitude of the 
universal quantum state is a sum of the behaviors of the squared 
amplitudes of | z - >e | points up>a and | z . >e | points down>a. Be-
cause of the decoherence, the patterned behavior of the squared 
amplitude of 2

1  | z - >e | points up>a + 2
1  | z . >e | points down>a con-

tains within it (at smaller squared- amplitude scale) both the pat-
tern produced by | z - >e | points up>a and the pattern produced 
by | z . >e | points down>a. So if all it takes for there to be a z- spin 
up electron and a “points up” apparatus is for one pattern in the 
squared amplitude to exist, and all it takes for there to be a z- 
spin down electron and a “points down” apparatus is for the other 
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pattern to exist, then there are now two apparatuses and two elec-
trons, in different states.

This argument is so powerfully lodged in the Everettian mind 
that it can blind one to the structure of alternative theories. 
David Deutsch has opined that “pilot- wave theories are parallel- 
universe theories in a state of chronic denial.”13 The notion is that 
the linearly evolving quantum state alone already implies the 
existence of a multiplicity of familiar macroscopic worlds. Since 
Bohmian mechanics posits such a quantum state, the addition 
of actual particles on particular trajectories could at best add yet 
another, superfluous, world. This misunderstands the role of the 
particles— the local beables— in that theory. If tables and chairs 
and cats are structured collections of local entities in space- time, 
then stripping the local entities from the theory strips out all the 
familiar material objects as well. Furthermore, material objects 
made of Bohmian particles, or GRW flashes, don’t have the same 
conceptually problematic features as decoherent branches of the 
quantum state: They don’t split or divide, objects do not have mul-
tiple successors, and so on. These theories face fewer conceptual 
problems explicating probabilistic language: The probabilities are 
for the local beables to be arranged one way or another.

Insofar as there are no obvious local beables in the Everettian 
ontology, it is unclear how to connect the ontology of the theory 
to the everyday world. Wallace and Chris Timpson (2010) have 
made a proposal addressing this problem, called “Spacetime State 
Realism.” One aim of the theory is to explain how the Everettian 
can, after all, attribute physical contents to regions in space- time.

Wallace and Timpson frame their account using field theory. 
Field- theoretic states, including the quantum state, are specified 
using mathematical objects tied to regions of space- time. If we 
take this at face value as implying a commitment to space- time 
itself (how else to understand the regions?), then the ontology of 
the theory already contains both the universal quantum state and 
a familiar space- time structure. But positing a space- time is of 
little use if there is no matter localized in it.

13 Deutsch (1996), p. 225.
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Given the universal quantum state, there is a natural way to 
define a mathematical object associated with a limited space- time 
region, called the reduced density matrix. The basic idea behind 
space- time state realism is to treat this reduced density matrix 
as representing a real part of the physical ontology, a part local-
ized in the given region. The mere existence of the mathematical 
object alone does not magically imply the existence of any such 
ontology, just as the collapses of the GRW wavefunction alone 
do not imply the existence of the flash ontology. The mathemati-
cal function from collapses to space- time points exists willy- nilly, 
but the theory only comes to have physical flashes at those points 
via an act of physical postulation. Similarly, the mere mathemati-
cal existence of a function from the wavefunction to a mathe-
matical density in space- time does not imply the real existence 
of a matter density. And the mathematical existence of “Bohmian 
trajectories” definable from the wavefunction via the guidance 
equation does not imply the real existence of Bohmian particles. 
The flashes or the matter density or the particles only get into the 
physical ontology as physical postulates of the theory. Once there, 
their behavior can be described by these mathematical functions. 
But the functions alone, which exist of necessity as mathemati-
cal objects, do not call them into existence. Otherwise, all these 
ontologies would automatically follow from the existence of the 
quantum state!

So one could fill out an Everettian physical ontology as follows. 
In addition to a quantum state, there is a real, macroscopically 
familiar space- time structure, and in that space- time, there is a 
physical magnitude described by the reduced density matrix. We 
have inflated the ontology beyond just the quantum state but now 
have a familiar space- time and something in that space- time to 
show for it.

Several challenges ensue. One is this: Whereas the distribution 
of particles in space- time in a Bohmian theory can correspond in 
an obvious way to the world we think we see, and the distribution 
of flashes in GRW with a flash ontology, and the distribution of 
high- density matter in GRW with a matter density ontology can 
as well, the Everettian reduced density matrix presents nothing 
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like a picture of the world we think we live in. Instead, intuitively, 
the reduced density matrix at best corresponds to all the distri-
butions of matter on all the decoherent branches superimposed 
on one another. Given how much branching and chaotic mixing 
of matter there has been since the Big Bang, the reduced density 
matrix of any region of space- time would be almost completely 
uniform at all scales. It will display no notable structure at all.14

It is here that appeal is made to branching. The reduced density 
matrix of individual decohering branches might show a familiar 
spatial structure— perhaps one could pick out regions where stars 
are, and planets, and trees, and so on. But the branching struc-
ture in Many Worlds is only approximate rather than rigorously 
defined. So the phrase “the density matrix of a region relative to 
a branch” does not have sharp mathematical content. Only “the 
density matrix of a region relative to the complete universal wave-
function” (or “quantum state”) does.

Ignoring the fact that branches are at best only vaguely de-
fined, would the reduced density matrix of a region, relative to 
a branch, correspond in any obvious way to what we take the 
physical situation in the region to be? We cannot say without a 
specific theory— and hence a specific density matrix— to analyze. 
But Spacetime State Realism is more a programmatic suggestion 
rather than a precise theory, so it is hard to tell. For example, 
one case Wallace and Timpson discuss involves spin interactions 
between particles that are stipulated to have definite space- time 
trajectories.15 The trajectories are required to determine the inter-
action Hamiltonian between the particles. So these examples pro-
vide no clue as to how to get the trajectories in the first place. But 
ultimately, the trajectories are needed to connect theory to data.

In the standard theory, these density matrices are not used 
to characterize the intrinsic structure of matter. They are used 

14 An anonymous referee objects that for small regions, the reduced density 
matrix will be structureless; for middling- sized regions, there can be lots of struc-
ture of entanglement. But after 13.7 billion years of interaction, the entangled 
structures will be at such a huge scale that restricting to any everyday scale will 
lose the entanglement due to entangled areas being left outside.

15 Wallace and Timpson (2010), p. 723.
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instead to calculate probabilities for measurement outcomes. So 
the standard use of these mathematical objects already presup-
poses a solution to the measurement problem, which is exactly 
the thing we are now trying to use them to solve. What happens if 
we try to take them instead as representing the intrinsic structure 
of some localized matter?

A curious feature of positing a real physical quantity corre-
sponding to the reduced density matrix is that although each 
region has a density matrix associated with it, the quantity so de-
fined is not locally separable in the way that particles or flashes 
or matter densities are. Local separability requires the following 
feature: Specifying the locally separable ontology in each of two 
regions suffices to specify the locally separable ontology in their 
union. In other words, the characteristics of a large region su-
pervene on the locally separable characteristics of its parts. The 
global distribution of particles (or flashes, or mass density) is 
determined by the microscopic local distribution. Specify what 
there is in a collection of small regions that cover the whole space, 
and you specify the distribution for the whole space. But density 
matrices don’t work like that. The density matrix associated with 
the union of two regions typically contains more information— 
more structure— than the pair of density matrices of the regions. 
The source of this is entanglement between the regions.

Failure of local separability reverses the usual relation between 
part and whole. Since in a locally separable ontology, fixing the 
states of the parts fixes the state of the whole, it is natural to regard 
the parts as metaphysically more fundamental than the whole: 
The whole is “just the sum of the parts.” This inversion of the 
usual relation between spatial parts and wholes means that we 
cannot infer the macroscopic situation— the situation in a large 
region— from the state in the microscopic parts.

Spacetime State Realism, then, cannot follow the same strat-
egy for connecting theory to data as do the other theories we have 
examined. Those theories postulate a sharply defined unique dis-
tribution of local beables at microscopic scale whose collective 
behavior implies how macroscopic objects are shaped and move. 
This, in turn, can be compared to the macroscopic behavior of 
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laboratory apparatus. At the microscopic scale, all Spacetime 
State Realism can say about the local material content of regions 
is that it is nearly uniform everywhere: The decoherent branch-
ing structure will not be defined at that scale. The macroscopic 
situations we want to compare to laboratory reports cannot be 
recovered from the microscopic conditions. The Many Worlds 
theorist is forced to discuss the situation at macroscopic scale 
without reducing it to microscopics. And the relevant discussion 
at the macroscopic scale— the structures that are supposed to cor-
respond to data reports— will not be sharply defined, since the 
decoherent branching structure itself is not.

Can this yield a satisfactorily clear account? It is hard to tell 
without understanding how the details are filled in. The sugges-
tion of Wallace and Timpson is programmatic rather than spe-
cific. And the specification would require providing the exact 
details of the field theory, an investigation of how the density 
matrix and decoherence structure of the theory behave at vari-
ous scales, and the interpretive principles invoked to connect that 
behavior with macroscopic behavior.

Our decision to study nonrelativistic quantum mechanics has 
now come back to haunt us. That decision was pragmatic: The 
mathematical structure of nonrelativistic quantum mechanics 
is easier to present and learn, and so it allows us to investigate 
some characteristic features of quantum behavior in an admit-
tedly simplified setting. Questions about the dynamics of the 
quantum state, the justification of probabilistic language, locality, 
interference, decoherence, and examples of different sorts of local 
beables could be presented. The hope was that the nonrelativistic 
theory could at least provide a model for how properly relativistic 
extensions can be constructed. And one of my main themes is the 
methodological advantages of postulating local beables for mak-
ing empirical sense of the theory. We have seen how particles, 
flashes, and matter densities might play this role in the nonrela-
tivistic regime.

Having gotten to this far, we can go no further. Wallace and 
Timpson recognize the methodological utility of having a de-
scription of something distributed in space- time when trying to 
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understand the theory. They suggest using the reduced density 
matrix associated with space- time regions in field theory as the 
mathematical representation of that “something.” If we take the 
step of making a commitment in the theory to this additional on-
tology, we have something to work with to explicate the physical 
structure of familiar objects. But we have traded the exact- but- 
unrealistic simplifications of the nonrelativistic theory for the 
more- realistic- but- programmatic discussion that appeals to field 
theory.

At least we can say this: Spacetime State Realism is not an on-
tologically monistic theory. It postulates a quantum state of the 
universe, and in addition a space- time structure, and in addi-
tion a local- but- nonseparable physical content to regions of the 
space- time. Despite Wallace’s appeal to a very generic form of 
functionalism, it is ultimately the branch- dependent behavior of 
this localized ontology that might allow us to make contact with 
the language of data. It would be in terms of the local state of re-
gions of space- time that we would understand claims about how 
macroscopic objects are structured and move. But what that local 
content precisely is, and hence how it behaves, cannot be dis-
cussed at this generic level. We would need a detailed field theory 
to make further progress.

furTher reading

The literature on Many Worlds is vast. An excellent collection of 
discussions of the theory, both critical and supportive, is Saun-
ders et al. (2010). Discussion of the theory has evolved. An over-
view from an earlier perspective is Barrett (1999).
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CHAPTER 7

Relativistic Quantum Field Theory

The lasT Three chaPTers  have discussed different sorts of exact 
theories designed to recover the predictions of the Quantum 
Recipe for nonrelativistic quantum mechanics, including the 
predictions for our original eight experiments in chapter 1. The 
exposition of these theories has taken a classical, nonrelativistic 
space- time structure for granted. An absolute notion of simulta-
neity is presupposed in the definition of the configuration space 
of a system, and hence in the definition of the wavefunction as 
a complex (or spinorial) function on configuration space. The 
exact dynamics of the original GRW theory employs the notion 
of simultaneity in specifying the collapse dynamics, and the guid-
ance equation in Bohmian mechanics makes essential use of the 
objective time order of distant events. As we have seen, in Bohm-
ian mechanics, the exact time order of two distant spin measure-
ments on an entangled pair of particles can determine whether an 
experiment yields one observable outcome rather than another. 
When measuring the z- spin of a pair of particles in the singlet 
state, for some particular initial conditions, one will get the result 
up- on- the- right- and- down- on- the- left if the right- hand experi-
ment is performed first and the result down- on- the- right- and- 
up- on- the- left if the left- hand experiment is performed first. 
“First” in the preceding sentence refers to the order of the experi-
ments in an objective absolute time structure.

The theory of relativity, however, denies the existence of any 
such objective time structure. In that theory, experiments car-
ried out far apart (at spacelike separation from each other) have 
no objective time order: neither occurs “first” or “second.” Con-
structing a completely relativistic theory along pilot wave lines is 
therefore a nontrivial task. Similarly, an objective collapse theory 
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must be formulated differently in a relativistic context, since it no 
longer makes any sense to say that the collapse is instantaneous. 
The Many Worlds approach does not fall prey to either of these 
difficulties, since the quantum state never collapses and there is 
no additional guidance equation.

So one challenge facing us is adapting an exact quantum 
theory to a relativistic space- time domain. Yet another chal-
lenge arises from physical phenomena not illustrated in our eight 
experiments.

The extension of the mathematical techniques of the quantum 
formalism to a relativistic setting implies the existence of anti-
particles, such as the positron. (A positron is physically identical 
to an electron except that it has the opposite electric charge.) Ex-
perimentation reveals that sufficiently energetic interactions can 
produce electron/positron pairs, so at the end of the experiment, 
there are more particles than at the beginning. In our eight exper-
iments, nothing like this happens: I described those experiments 
in terms of the behavior of a fixed number of particles. Since the 
configuration space of the system depends on the number of 
particles, having a variable number of particles requires further 
adjustment to the mathematical formalism. Indeed, many physi-
cists would insist that in this setting, it is misleading to speak of 
“particles” at all. Rather than talking about electrons, they say, 
one should speak of “the electron field.” In certain experimental 
conditions, this field can produce behavior reminiscent of classi-
cal particles, but in other conditions, no such picture is available. 
One can define a “number operator” acting on this field that has 
eigenstates with different values. These are interpreted as quan-
tum states with various numbers of particles. But if the state of 
the system in not an eigenstate of this operator, then there is no 
definite number of particles, and “particle talk” is not appropriate 
for the system.

At the least, then, the nonrelativistic Quantum Recipe must 
be modified to accommodate the account of space- time structure 
presented in the theory of relativity, and also to accommodate 
the experimental phenomenon of particle creation and annihila-
tion. The formalism designed to meet these challenges is called 
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“quantum field theory” (QFT), and it is in this mathematical 
language that our most exact and predictively accurate physical 
theories of matter have been formulated.

One might contend that the attention we have paid to non-
relativistic quantum mechanics so far has been misplaced. If the 
currently best predictive formalism is QFT, then our interpretive 
efforts ought to have been directed at it from the outset. For sev-
eral reasons, I have not proceeded in this way.

First, QFT is much more mathematically complex than quan-
tum mechanics. Since many iconic quantum phenomena— two- 
slit interference, quantization of spin, EPR correlations, violations 
of Bell’s inequality— already appear in the simpler setting, it is a 
pedagogically useful place to begin. We were also able to more 
easily discuss the basic strategies for interpreting the formalism, 
namely, postulating an objective collapse of the quantum state, 
adding additional variables, and trying to do without either of 
these in a Many Worlds approach. We now face the prospect of 
modifying these theories to fit the relativistic context, but we can 
be guided by these examples of the basic moving parts in each 
sort of theory.

Second, the nonrelativistic Quantum Recipe does not suffer 
from certain mathematical difficulties that QFT faces. Calcula-
tions in that theory are carried out by summing over a sequence 
of terms, but if one allows the sum to cover all possible terms 
in the sequence, then the mathematics sometimes breaks down. 
In particular, calculations intended to produce probabilities for 
certain outcomes yield divergent sums— infinities— instead of 
finite answers. This problem led to the mathematical technique 
called “renormalization” and to a general outlook on QFT as 
an “effective theory.” The basic idea is that the theory actually 
used to make calculations does not pretend to be complete or 
exact. Instead, it is a good approximation that holds so long 
as the energies involved in the experimental situation are suf-
ficiently low. Instead of calculating predictions from an exact 
fundamental theory, one makes observations at a certain energy 
scale to fix effective constants for that scale, and then uses those 
constants to make further predictions in that energy regime, 
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cutting off higher- energy terms from the sequence. Regarding 
the mathematics being used as that of an effective theory con-
cedes that one is not giving a complete description of all the 
physics there is, but instead just the part of the physics most 
important at that scale.

Some physicists and philosophers are dissatisfied with this 
sort of theory as the basis for investigations into physical ontol-
ogy, preferring a sharply defined mathematical formalism. One 
such approach is known as Axiomatic Quantum Field Theory. 
As a purely sociological fact, few physicists demand this sort of 
axiomatization. (But, of course, few physicists demand clear solu-
tions to the measurement problem, or an account of the collapse 
of the wavefunction, or clarification of the other foundational 
problems we have been concerned with!) So individuals making 
foundational inquiries into QFT are immediately confronted with 
a choice: Should one focus on the sort of effective field theory that 
physicists use in day- to- day calculations, or instead begin with 
the axiomatic theory, even if it is not the sort of thing from which 
actual testable consequences have been derived? The philosophi-
cal community is not in agreement.

Assessing this dispute requires more technical detail than can 
be provided at our level of exposition, but readers interested in 
the issue can begin with papers by David Wallace (2006, 2011) and 
Doreen Fraser (2009).

Rather than attempting to address this issue, then, we will con-
tent ourselves with just the two already mentioned. First, what 
challenges does the move from a classical space- time with an ab-
solute notion of simultaneity to a relativistic space- time pose for 
our different sorts of quantum theories? And second, what impli-
cations does the phenomenon of particle creation and annihila-
tion have for proposed local beables of the theories?

simulTaneiTy and foliaTions

Classical space- time structures postulate absolute simultaneity, 
that is, a temporal structure in which two events either happen at 
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the same time or one precedes the other in time.1 The collection 
of events that happen at the same time form a simultaneity slice of 
the space- time, and the whole space- time is foliated into a collec-
tion of such slices. That is, the space- time is carved, in a unique 
way, into a sequence of global leaves composed of simultaneous 
events.

In a classical setting, the configuration of a system is defined 
by reference to such a foliation. The configuration of a collection 
of particles at a given time is determined by the positions of the 
parts of the system at that time. The configuration of a field at a 
given time is determined by the values of the field at different spa-
tial locations at that time. Since the foliation partitions the entire 
space- time into slices and the configuration specifies the distribu-
tion of matter on a slice, the whole history of the particles or fields 
can be described by the sequence of configurations.

In relativity, the structure of space- time does not in itself de-
fine any such unique foliation. Events at “spacelike separation” 
(i.e., events that lie outside each other’s light cones) have no de-
terminate temporal order: One can neither say that one happens 
first nor that they happen at the same time.2

The absence of a unique foliation may or may not pose a 
problem when adapting a theory to a relativistic setting. If the 
theory makes no important use of the notion of simultaneity in 
its fundamental dynamical laws, then the absence of a foliation 
may present few problems. Special Relativity demonstrates that 
absolute simultaneity plays no essential role in the formulation 
of Maxwell’s laws of electrodynamics. Since electromagnetic ef-
fects are never propagated instantaneously in that theory, there is 
no need for absolute simultaneity. One important consequence is 
that classical electromagnetic theory cannot predict violations of 
Bell’s inequality for experiments carried out sufficiently far apart 
that light signals from the measurement made on one side could 

1 This section presumes that the reader is familiar with the theory of relativity. 
If not, might I suggest the companion volume to this one: Maudlin (2012)?

2 Details about these different space- time geometries can be found in the com-
panion volume to this one (Maudlin 2012).
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not reach the other. Since we need to recover such violations 
somehow, reconciling quantum theory with a relativistic space- 
time structure is bound to be tricky.

In the case of our nonrelativistic quantum theories, we will 
focus on two interrelated features: how the theory accounts for 
the observable behavior of macroscopic objects and how it gener-
ates violations of Bell’s inequality. Presuming that the behavior of 
the macroscopic objects is determined by the behavior of their 
microscopic local parts, we investigate whether the time order of 
distant events plays a central role in the dynamics of those parts. 
If it does— as in the example above from Bohmian mechanics— 
then some fundamental adjustment must be made to adapt the 
theory to a relativistic space- time. One can distinguish three dif-
ferent strategies.

The first strategy requires finding relativistically well- defined 
replacements for the simultaneity structure and modifying the 
equations to use those in place of the classical foliation. While 
it is true that a relativistic space- time typically has no preferred 
foliation or “slicing,” it does contain other sorts of geometrical 
structures not present in classical space- time. For example, the 
light- cone structure associates with each event a future and past 
light- cone. The interiors of the light- cones of an event can be fo-
liated in a unique way by surfaces of fixed proper time from the 
event. These foliations are not global— they do not extend outside 
the light- cone— but for certain purposes, they may be sufficient 
for the task at hand. Whether they are sufficient depends on the 
theory we are trying to adapt.

The second strategy is to define a unique global foliation of the 
space- time somehow and then use that foliation in the relativistic 
theory in place of the foliation of absolute time in the classical 
theory. This global foliation could, for example, be determined 
by the distribution of matter as reflected in the quantum state. If 
the means by which the foliation is defined are themselves rela-
tivistically kosher (i.e., they do not make reference to any non-
relativistic space- time structure), then the resulting theory can be 
defended as relativistic but can still make use of a global foliation 
in much the same way as the nonrelativistic version does.
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The third strategy is simply to postulate a foliation as an intrinsic 
feature of the space- time. This does not mean returning to a clas-
sical space- time structure— classical space- times do not contain 
light- cones, for example. Supplementing a relativistic space- time 
with a unique foliation yields a new account of the spatiotemporal 
structure of the world. This is not a popular strategy— it is rightly 
seen as a rejection of relativity— but it nonetheless is viable. If a 
global foliation of the space- time is required to define the dynami-
cal equations of the theory, this is an option to be explored.

How do our nonrelativistic theories fare with respect to these 
strategies?

The nonrelativistic GRW collapse dynamics makes use of si-
multaneity in specifying the collapses of the quantum state. In 
the flash ontology version, these collapses in turn determine the 
distribution of the local beables— the flashes— and hence the em-
pirical predictions for the behavior of observable macroscopic 
matter. Regarded in this way, the collapses themselves play a 
somewhat instrumental role: What is ultimately important for 
the predictions of the theory is just a probability distribution over 
the possible distributions of flashes. If you know how likely it is 
that the flashes are distributed one way rather than another, then 
you know what the theory predicts empirically. The question then 
becomes whether the probability distribution can be generated 
without reference to any unique foliation of space- time, using 
only relativistic geometrical resources.

This is possible. Roderich Tumulka developed a version of the 
GRW collapse theory that makes use only of relativistic space- 
time structure for defining the probabilities for various distribu-
tions of flashes, using as initial conditions a quantum state defined 
on an arbitrary slice through space- time (a Cauchy surface) and 
a “seed flash” for each particle.3 The seed flash determines both 
a future light- cone and a foliation of the future light- cone deter-
mined by the proper time from the seed. Since any subsequent 
flash for that particle must appear in the future light- cone, this 
foliation is sufficient to write down analogs to the nonrelativistic 

3 See Tumulka (2006).
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collapse equations, using the foliation in place of classical abso-
lute time.

Given these initial conditions, the theory makes probabilistic 
predictions. For example, given a pair of electrons in the singlet 
state in an experiment with two z - oriented Stern- Gerlach magnets, 
the theory ascribes a 50% chance for an up- flash- on- the- right- 
and- down- flash- on- the- left and a 50% chance for a down- flash- 
on- the- right- and- up- flash- on- the- left. The totality of predictions 
for all possible experimental arrangements predicts violations of 
Bell’s inequality.

Tumulka’s theory is nonlocal. Information about experimen-
tal outcomes far away (at spacelike separation) can improve one’s 
predictions for local outcomes even though everything in the past 
light- cone of the local experiment has been taken into account. This 
is a consequence of entanglement of the quantum states of the 
two sides. (Contrast this with Bertlmann’s socks, mentioned in 
chapter 1. Taking into account the past light- cone of the event of 
looking at one of his socks, one can predict with certainty what 
color will be seen, because the past light- cone contains the sock. 
Having taken this into account, information about the color of 
the other sock does not improve one’s predictions.) The quantum 
states in Tumulka’s theory show entanglement, and the theory 
violates locality, but it still requires nothing but relativistic space- 
time structure for its formulation.

This theory, informally known as “Flashy Relativistic GRW,” is 
not a complete physical theory. In particular, it does not provide 
for an interaction term in the Hamiltonian of the system. But the 
theory does provide a proof- of- concept example that nonlocality, 
evidenced by violation of Bell’s inequality for events at space- like 
separation, can be implemented in a completely relativistic way.

Further investigations have produced fully relativistic matter- 
density theories with a GRW- like collapse dynamics. Once again, 
the dynamics is fundamentally probabilistic: From a given initial 
quantum state, different futures can arise. The collapse dynamics 
can be made relativistic in a way similar to that of Tumulka’s the-
ory. The specification of the matter density of a particle at a point 
in spacetime is postulated to be a function of the quantum state 
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defined with respect to the past light- cone of that point. Since 
the light- cone structure is relativistic, this can be done without 
adding a foliation. This matter density does, however, behave in 
rather surprising ways. For example, starting with a “particle” in 
an equal superposition of traveling to the east and to the west, 
the matter density will contain equal- density lumps moving in 
both directions. If a single screen is set up far away in one direc-
tion, then the lump traveling that direction will continue until it 
meets the screen. The quantum state then evolves in one of two 
ways, with equal probability. One way corresponds to finding 
the particle at the screen: The matter density grows from half of 
the particle mass to its full value, and a mark is formed on the 
screen. The other way corresponds to not finding the particle at 
the screen, and the matter density is reduced to zero there.

The key question is what happens to the other lump, the one 
that has no screen to interact with. Since the matter density at a 
point is a function of the quantum state along its past light- cone, 
the other lump continues until the measurement event at the dis-
tant screen is in its past light- cone. At that point, the matter den-
sity on that side either increases to double its initial value (if the 
particle is not found at the screen; Figure 27b) or is reduced to 
zero (if the particle is found; Figure 27a). One is tempted to say 
that the quantum state “collapses along the future light- cone of the 
measurement event at the screen,” although the disposition of the 
matter density in space- time is not so much due to how the quan-
tum state behaves as to how the matter density at a point is calcu-
lated from the quantum state. By virtue of the use of the light- cone 
structure, the theory can be made completely relativistic. See Bed-
ingham et al. (2014) for an overview of this sort of theory.

In sum, a GRW- like collapse theory can be formulated using 
only the spatiotemporal structure postulated by relativity, and 
this can be done for both the flash and the matter density on-
tologies. In both cases, the indeterminism of the theory plays a 
central role in achieving harmony with relativity.

Indeterminism allows these theories to respect all symmetries 
of the relativistic space- time. Consider again the case of a pair 
of separated electrons in the singlet state, subjected to distant 
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z- spin measurements. The initial quantum state of the particles is 
completely symmetric between the two sides, so if the quantum 
state provides a complete physical description, then the electrons 
have the same physical characteristics. Nonetheless, the outcome 
of the experiment breaks this symmetry: On one side there is an 
“up” outcome and on the other “down.” How does this symmetry 
get broken?

In an indeterministic theory, such as GRW, the symmetry is 
broken by sheer chance, by the collapse occurring one way rather 
than the other. The probabilities for the collapses can retain the 
symmetry, since each result can be ascribed the same 50% chance. 
So the probabilistic laws can respect the symmetry. In contrast, a 
deterministic theory must identify some physical feature of the 
experimental situation to break the symmetry and determine 
which outcome occurs. It is exactly here that tension with relativ-
ity occurs for the pilot wave approach.

As mentioned above, the classical foliation of space- time pro-
duced by absolute simultaneity figures in the guidance equation, 
so that the temporal order of distant experiments can influence 
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the observable outcome. Attempts to formulate a relativistic pilot 
wave theory have therefore focused on the second approach: 
Using properties of the quantum state itself to define a foliation 
and then using that foliation in the guidance equation. This is 
discussed in, for example, Dürr et al. (2014). There are technical 
questions about the conditions under which a quantum state does 
determine a unique foliation (e.g., because of symmetries, a vac-
uum state in Minkowski spacetime cannot), but it is plausible that 
in any realistic situation, features of the quantum state can pick 
out a foliation. This raises the question of whether such a theory 
is “fundamentally relativistic.” Since the foliation is determined 
from the quantum state, it is not implicit in the space- time struc-
ture independently of the matter. Nonetheless, any essential use 
of a global foliation when specifying the dynamics of a theory— 
even if the foliation itself is derived rather than fundamental— 
can easily strike one as contrary to basic relativistic postulates.

Part of this uneasiness about appeal to a global foliation is that 
the rejection of absolute simultaneity— and the global foliation 
that corresponds to it— is the central conceptual innovation of 
relativity. Letting a physically important foliation back in, even 
via definition from the quantum state, looks like step backward.

The argument in favor of counting such a theory as funda-
mentally relativistic turns on how the foliation is determined. If 
the rule can be implemented using only the standard relativistic 
metric and the quantum state, then one can argue that the theory 
as a whole remains relativistic, even though part of the dynamics 
adverts to the derived foliation.

Finally, one can adopt a straightforward rejection of the theory 
of relativity as the final, complete account of space- time structure 
and just posit a foliation in terms of which the guidance equation is 
formulated. No one would argue that such a theory is fundamen-
tally relativistic: It maintains that the theory of relativity missed 
out on an essential feature of space- time. One does not reject any 
of the usual relativistic structure— light- cones, proper time, and 
so forth— but supplements it with an additional piece of intrinsic 
structure. (That is, somewhat ironically, this position holds that 
the Einsteinian description of the structure of space- time is not 
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complete. It is not that the relativistic metric does not represent 
real space- time structure, it is just that it does not represent all 
the objective space- time structure.) Einstein’s theory would have 
missed this structure because it was not tasked with accounting 
for the physical phenomena, such as violations of Bell’s Inequal-
ity, that depend on it. From this perspective, it is not surprising 
that the theory of relativity does not provide a complete account-
ing of space- time structure, since it was not designed to repro-
duce characteristically quantum- mechanical effects.

John Bell considered this sort of resolution to the tension be-
tween relativity and quantum theory but was unenthusiastic. In 
his paper “Beables for Quantum Field Theory,” he sketches a way 
to formulate a QFT and finally confronts the question of “seri-
ous Lorentz invariance” (i.e., whether the theory is fundamentally 
relativistic). After some attempts to clarify exactly what the con-
dition of serious Lorentz invariance is, he concludes:

So I am unable to prove, or even formulate clearly, the 
proposition that a sharp formulation of quantum field the-
ory, such as that set out here, must disrespect serious Lo-
rentz invariance. But it seems to me that this is probably so.

As with relativity before Einstein, there is then a pre-
ferred frame in the formulation of the theory . .  . but it is 
experimentally indistinguishable. It seems an eccentric way 
to make a world.4

It is not entirely clear how to elevate the term “eccentric” into 
a valid criticism. The general drift seems to be that if a foliation 
of space- time plays a fundamental dynamical role in a theory, 
then one would expect some experiments to be able to reveal the 
foliation empirically. But the empirical predictions of quantum 
theory— even in Bohmian mechanics, where the foliation plays 
a central dynamical role— are insensitive to the exact foliation. It 
remains hidden from empirical view, even as it plays an inelim-
inable physical role in the theory.

4 Bell (2004), Chapter 19, p. 180.
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How objectionable is this difficulty? One might contend that 
space- time, by itself, is not observable: It has no intrinsic sensible 
qualities. At best, we infer the structure of space- time from the ob-
servable characteristics of matter in space- time. Why expect that 
all space- time structure should be empirically discoverable? It is, 
one might say, surprising that any of the fundamental structure is 
accessible experimentally and would be surprising if all of it were.

A competing argument is that it requires some sort of “con-
spiracy” or fine- tuning to shield a fundamental physical structure 
from empirical observation. Why would Nature make the struc-
ture and make use of it, just to hide it from view?

Neither of these rhetorical ploys on its own should carry much 
weight. The fine- tuning/conspiracy criticism requires more spe-
cific detail about the theory under investigation. Given the basic 
structure of the laws (e.g., the guidance equation), do the con-
stants of nature have to be specially picked to render the foliation 
empirically inaccessible? Do the laws themselves look somehow 
ad hoc or contrived or artificial? In the case of the nonrelativistic 
guidance equation, none of these characterizations is applicable. 
It is, if anything, a remarkably simple and natural equation. Yet 
the preferred foliation in the nonrelativistic theory is empirically 
hidden. That is, although the exact outcome of an experiment 
may depend on the absolute time order of the distant laboratory 
operations, one cannot determine from the observable outcomes 
what that time order is.5 The mere fact that some fundamental 
physical structure is empirically inaccessible (according to the 
theory) is not in itself proof of anything conspiratorial.

If a theory postulates a structure that is empirically inacces-
sible, then one can rightly wonder whether a different theory, 
shorn of that structure, can produce the same empirical predic-
tions. But that question, too, can only be investigated in the indi-
vidual case. The role of the preferred foliation in the formulation 
of the pilot wave theory is so deeply embedded in the dynamics 

5 The way the outcome depends on the time order of distant events turns on 
the exact initial conditions of the experiment, and those cannot be empirically 
determined without interfering with the experiment itself.
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that there is no obvious way to do without it. Hence the main 
options for such a theory: Derive a foliation from something else 
you already accept or postulate a foliation as an additional piece 
of space- time structure.

Nonrelativistic quantum theories make use of absolute simul-
taneity in different ways. It is meaningless to ask what it takes to 
adapt “quantum mechanics” to a relativistic context, since differ-
ent exact theories are structured differently. It appears that collapse 
theories— with both flash and matter density ontologies— can be 
formulated using only relativistic space- time structure and no 
preferred foliation of the space- time. This can be accomplished 
in part because these theories are fundamentally stochastic, with 
irreducibly probabilistic dynamics. Due to this indeterminism, 
these theories do not endorse specific counterfactuals about what 
would have happened under different circumstances, such as if 
one experimental arrangement had been used rather than another. 
In contrast, the nonrelativistic pilot wave approach is determinis-
tic and so does support definite counterfactual claims. This seems 
to require reference to a foliation, which may be either derived or 
fundamental. There is no obvious bar to extending a Many Worlds 
approach to a relativistic setting, since it requires neither any col-
lapse nor any guidance equation for the local beables. But that is in 
part because it is not obvious what local beables the Many Worlds 
theorist postulates in the first place. The seeming immunity of 
Many Worlds to these problems may be due to its obscurity on 
that issue of fundamental importance.

local beables for qfT

Particles are fundamentally different from fields. A classical point 
particle has a trajectory: a collection of space- time points that it 
occupies, which forms a continuous curve in the space- time. The 
motion of the particle is that trajectory. Other properties of the 
particle (its mass, charge, etc.) are attributed to it in connection 
with dynamical laws with the aim of making precise predictions 
about the trajectory.
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In contrast, a classical field has no trajectory. A field is defined 
everywhere in space- time, having a value at every point. It may 
be possible that a field take a “zero value” at a point, but that need 
not be understood as the absence of the field altogether. Further-
more, classical fields, such as the electromagnetic field, typically 
take nonzero values almost everywhere. Fields, unlike particles, 
do not differ in where they are but rather in what values they have 
at each location.

These differences in the nature of classical fields and particles 
yield further conceptual differences. Particles can be counted: 
One can ask how many distinct particle trajectories pass through 
a given region of space- time. There is some exact number of clas-
sical electrons in a given region. But there is only one electromag-
netic field in the region, no matter what its state may happen to be.

Even though in this sense classical particles and fields are 
fundamentally different sorts of things, it is easy to see that each 
could give rise to the same macroscopic behavior. A physical 
body of water is fundamentally particle- like due to the molecular 
structure of water. Look on a fine enough scale, and the water 
is not spread out continuously in space. But at a gross macro-
scopic scale, a field- like description of the water (such as given 
in fluid mechanics) works perfectly well. Ocean currents can be 
usefully mathematically modeled by continuous functions giving 
the height of the water, even though at fine- enough scales, these 
functions do not represent the physical situation. Conversely, it 
is easy to see how a fundamentally field- like object could exhibit 
particle- like behavior. Coherent, nondispersing waves in a me-
dium can have trajectories that approximate particle trajectories 
so long as one does not look too closely. If the field values are 
small almost everywhere save in some continuous thin regions 
of space- time, those regions can act like particles, be effectively 
countable, and so forth.

Since we have been pursuing Bell’s strategy of connecting 
the ontology of an exact fundamental physical theory with the 
empirical content of the theory via the local beables, we must 
confront the question of local beables for relativistic QFT. It is 
tempting to just read the answer off the name. Clearly, it seems, 
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the theory is a theory of fields, so any local ontology must be an 
ontology of fields. It might be further remarked that one can ar-
rive at the mathematics of the theory by quantizing classical field 
theory. What “quantization” means, in the simplest terms, is tak-
ing a classical theory that postulates certain physical magnitudes 
(e.g., the value of a field or the position of a particle) and “putting 
the hats on”: The classical quantity is replaced in the new theory 
by an operator that operates on a quantum state. There are rules 
(or at least guidelines) about how these operators should relate to 
one another algebraically. In this way, one arrives at nonrelativ-
istic quantum mechanics by replacing the position and momen-
tum quantities that characterize classical particles with position 
and momentum operators. One also then needs a collection of 
wavefunctions (or density matrices) for these operators to oper-
ate on. In the same mathematical vein, one can take the relativ-
istic theory of the electromagnetic field, which attributes a field 
value to each point in space- time, and replace these quantities 
with field operators that are associated with space- time locations. 
Having thus started with a classical field theory as a mathemati-
cal template, it is plausible to assume that any local beables in the 
resulting theory must themselves be fields.

There is another reason to assume that the local ontology of 
relativistic QFT should be fieldlike rather than particlelike: the 
observed phenomenon of particle creation and annihilation. For 
example, an experiment may be naively described in following 
way. A high- energy proton circulating clockwise around the Large 
Hadron Collider strikes a high- energy proton circulating coun-
terclockwise, creating an explosion of new particles— electrons, 
muons, positrons, protons— that fly out in all directions with dif-
ferent energies. Although this description is couched in terms of 
particles, the collection of particles described at the end of the 
experiment is quite different from the pair of particles at the be-
ginning. If we think in terms of particles, they do not appear to 
exist eternally but come into and go out of existence.

In the nonrelativistic pilot wave theory we have discussed— 
Bohmian mechanics— this cannot happen. We developed that 
theory using the configuration space for a fixed number of 
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particles as the space in which the wavefunction is defined (Dürr 
et al. 2006). Given such a wavefunction, the guidance equation 
then determines how the particles move, but in this motion, the 
number of particles is always conserved. In contrast, QFT both 
allows the number of particles in a situation to change and admits 
of quantum states of indefinite particle number. An operator in 
QFT, called the “number operator,” is employed in the quantum 
recipe to make predictions about how many particles of a cer-
tain kind one will “find” in a particular experimental situation. 
As a concrete example, one might create a bubble chamber, in 
which trails of condensed liquid drops appear, seemingly much 
like the contrail that follows a jet plane. Charged particles such 
as electrons create these trails, and so by counting trails, one can 
count electrons. But certain quantum states in the theory make 
only probabilistic predictions about this number— a particular 
collision might create three electrons or four, and the number of 
observable tracks can be accordingly variable. The collision cre-
ates a quantum state of indefinite electron number.

This possibility makes it tempting to deny the existence of any 
fundamental particles at all. If particles exist, the thought goes, 
there must at any given time be a definite, exact number of them 
determined by the number of distinct trajectories. But in a state 
of “indefinite particle number,” no such exact number exists, so 
there can’t be any particles at all. Instead there is a field that can, in 
particular circumstances, act in a more- or- less particle- like way. 
The very same field can, at different times, have different numbers 
of distinct localized lumps in it (corresponding to a definite par-
ticle number), but it can also be in a more amorphous state that 
does not admit of a “particle interpretation.”

Given all the considerations in favor of a field- like ontology 
of local beables for relativistic QFT, it may come as a surprise to 
read John Bell’s paper “Beables for quantum field theory.”6 Bell 
asks what sort of local beables would be reasonable to postulate 
in an exact version of QFT. He is largely guided by mathematical 
tractability in his investigation. The first suggestion he considers 

6 Bell (2004), Chapter 19.
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has a field- like character: energy density. A classical field, defined 
continuously over space- time, produces a continuous distribu-
tion of energy. It is easy to see how such a continuous local be-
able at microscopic scale could relate to the observed outcomes 
of experiments: Where we say there is a “particle track” through 
a cloud chamber, the exact theory postulates a localized increase 
in the energy density.

But introducing such an energy density as a local beable faces 
technical mathematical problems. The operators associated with 
energy density in different locations fail to commute, which sty-
mies attempts to attribute definite local energy densities to both 
locations. And the whole point of the local beables is that they 
exist and have values regardless of whether they are being “mea-
sured.” Energy densities might have played that role, but they can-
not easily be introduced into the theory for purely mathematical 
reasons.

Bell suggests that we “fall back then on a second choice— 
fermion number density. The distribution of fermion number 
in the world certainly includes the positions of instruments, in-
strument pointers, ink on paper.  .  .  . and much much more.”7 
Fermions (spin- 1/2 particles, e.g., electrons and quarks) are pro-
totypical particles, and making the fermion number density in 
every space- time region a beable implies that a definite physical 
fact exists about how many fermions are there. So in moving from 
energy density to fermion number density, Bell switches from a 
field- like local beable to a particle- like local beable.

Bell’s comment about the positions of pointers, instruments, 
and ink reinforces the point made above. Field- like and particle- 
like (and flash- like) local beables at microscopic scale are all 
equally capable of playing the methodological role required of 
them: serving as the physical basis for observable macroscopic 
conditions. What is perhaps more surprising is that the particu-
late local ontology of fermion number density can play this role 
in the context of QFT, despite the considerations brought above 
in favor of the local beable being some sort of field. What, for 

7 Bell (2004), p. 175.
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example, of the observation that there are quantum states of in-
definite particle number?

Bell’s approach to QFT is a pilot wave approach: The role of 
the quantum state of a system is to help define a dynamics for the 
local beables, the fermions. So the existance of quantum states 
that are not eigenstates of the number operator is of no more sig-
nificance than the fact that most quantum states in nonrelativistic 
quantum mechanics are not eigenstates of the position operator: 
The Bohmian particles in the pilot wave theory nonetheless al-
ways have definite exact positions. Similarly, in Bell’s theory, there 
is always a definite number of fermions at each space- time loca-
tion. Further, the total number of fermions can change. The terms 
“particle creation” and “particle annihilation” are taken literally.

Technically, this means that the configuration space for the 
system is not merely the set of all configurations of N particles, 
but rather the set of all configurations of all possible numbers of 
particles (including zero). The wavefunction is defined as a func-
tion on this larger, more complicated configuration space. The 
dynamics of the fermions becomes indeterministic, with the ana-
log of the guidance equation yielding probabilities for various dif-
ferent evolutions of fermion number density. (Bell’s own theory 
is defined over a discrete space- time, like a lattice, rather than a 
continuous space- time.) Given an initial quantum state and an 
initial distribution of fermions, the probabilities for later fermion 
configurations— including configurations with more or fewer 
fermions— can be derived.

In sum, QFTs can be formulated to solve the measurement 
problem just as a nonrelativistic quantum theory does: via the 
postulation of local beables whose behavior underwrites the em-
pirical predictions of the theory. The same variety of microscopic 
local beables— including flashes, particles, and a continuous mat-
ter density— are available to serve this purpose. Detailed theories 
postulating each of these are constructed in different ways. As we 
have seen, one can construct theories using flashes and matter 
densities that employ only the relativistic metrical structure of 
space- time, while particle theories (with variable particle num-
ber) seem to require a preferred foliation. That foliation, in turn, 
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could either be derived from something else or postulated as an 
additional piece of space- time structure.

Textbook presentations of relativistic QFT mention none of 
this. They proceed along the lines of textbook presentations of 
quantum mechanics. Certain operators are identified as the “ob-
servables” of the theory and the Quantum Recipe is used to calcu-
late probabilistic predictions for the outcomes of “measurements” 
of these quantities. No account is given of how to determine, by 
physical analysis, which observable a concrete experiment mea-
sures (if any); nor is any physical account of the measurement 
interaction itself on offer. In QFT the observables are indexed by 
space- time locations, just as field values are indexed by space- 
time locations, and it is sometimes assumed that such an “observ-
able” can be “measured” by experimental conditions set up only 
in that location. But because no beables are specified, we are as 
at much of a loss about how to understand the exact ontology of 
standard textbook QFT as we are with standard textbook quan-
tum mechanics.

The mathematics of QFT is imposing, so much of the philo-
sophical literature on it is challenging for the nonexpert. Two 
introductions written for philosophers are listed in the Further 
Reading section for this chapter.

We have barely scratched the surface of QFT, and an introductory 
book such as this is not the place to go into detail, much less press 
on to the speculative heights of quantum gravity or string theory. 
But no matter how complex these theories become, they remain 
quantum theories, or rather Quantum Recipes: mathematical pre-
dictive apparatuses in need of physical theories to underpin and 
account for their empirical effectiveness. Our basic questions— Is 
the wavefunction informationally complete? Does the quantum 
state collapse? What are the local beables?— arise for them in just 
the same way, and the options available are basically the same. No 
matter how sophisticated the mathematics gets, or how adept one 
gets at using it, one still does not understand any of these theories 
until one understands how they address these most fundamen-
tal questions. Unlike the mathematics of nonrelativistic quantum 
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theory (which must be replaced by fancier gadgets as one moves 
on to field theory), the fundamental physical questions we have 
chewed over remain. So long as they remain unanswered, the 
basic quest for understanding physical reality is unfinished. And 
so long as physicists ignore or dismiss these questions, that basic 
quest has not yet begun.

furTher reading

Two useful introductory works are a paper by Huggett (2000) and 
the book by Teller (1995).
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